請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24252完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鵬林(Pung-Ling Huang),杜宜殷(Yi-Yin Do) | |
| dc.contributor.author | Hang-Wei Chen | en |
| dc.contributor.author | 陳涵葳 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:19:46Z | - |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-27 | |
| dc.identifier.citation | 孫守恭. 1982。台灣之瓜類病害. 行政院科技顧問組植物保護研究聯繫協調小組報告。行政院農業發展委員會. 台北. p. 219-221.
郭純德. 1995. 苦瓜採收後處理之研究. 國立灣大學園藝學研究所博士論文. 郭純德. 1987. 苦瓜果實採收成熟度與採收後生理之研究. 國立台灣大學園藝學研究所碩士論文. 蔡竹固、童伯開. 1989. 瓜類白粉病菌的生理與品種罹病性. 嘉義農專農學報21:191-199. 蔡竹固、童伯開. 1990. 台灣瓜類白粉病之發病生態. 嘉義農專農學報24:77-84. 蔡竹固、童伯開。1992。瓜類白粉病生態及防治策略。植保會刊34:139-148。 蘇世珩. 2004. 苦瓜CTR1同源基因之選殖與表現分析. 國立台灣大學園藝學研究所碩士論文. 蘇世珩. 2002. 苦瓜細胞分裂素受體、CTR1 cDNA之選殖與分析. 行政院國家科學委員會補助大專學生參與專題研究計畫研究成果報告. Bacon, M. A., S. Wilkinson, and W. J. Davies. 1995. pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol. 118: 1577-1515. Basu, D., K. Dehesh, H. J. Schneider-Poetsch, S. E. Harrington, S. R. McCouch, and P. H. Quail. 2000. Rice PHYC gene: structure, expression, map position and evolution. Plant Mol. Biol. 44: 27-42. Bent, A. F. 2001. Plant mitogen-activated protein kinase cascades: negative regulatory roles turn out positive. Proc. Natl. Acad. Sci. USA 98: 784-786. Brnakova, A., A. Godany, and J. Timko. 2005. An extracellular endodeoxy- ribonuclease from Streptomyces aureofaciens. Biochim. Biophys. Acta. 1721: 116-123. Buschges, R., K. Hollricher, R. Panstruga, G. Simons, M. Wolter, A. Frijters, R. van Daelen, T. Lee, P. Diergaarde, J. Groenendijk, S. Topsch, P. Vos, F. Salamini, and P. Schulze-Lefert. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695-705. Christiansen, K. M., C. A. Frye, L. E. Miller, and R. W. Innes. 2001. Genetic analysis of disease resistance mediated by the EDR1 MAPKK kinase. 12th international conference on Arabidopsis research. Dangl, J. L., R. A. Dietrich, and M. H. Richberg. 1996. Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8: 1793-1807. Deshmukh, S. S., and V. Shankar. 2004. Extracellular nuclease from a thermophile, Streptomyces thermonitrificans: purification and characterization of the deoxyribonuclease activity. FEMS. 237: 273-278. Epple, P., K. Apel, and H. Bohlmann. 1997. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9: 509-520. Frye, C. A., D. Tang, and R. W. Innes. 2001. Negative regulation of defense response in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. 95:373-378. Frye, C. A., and R. W. Innes. 1998. An Arabidopsis mutant with enganced resistance to powdery mildew. Plant cell 10:947-956. Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275-296. Gilchrist, D. G. 1998. Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu. Rev. Phytopathol. 36: 393-414. Glazebrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis- 2001 status. Curr. opin. plant biol. 4:301-308 Heitefuss, R. 2001. Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example. Naturwissenschaften 88: 273-283. Huang, Y., H. Li, C. E. Hutchison, J. Laskey, and J. J. Kieber. 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33: 221-233. Huckelhoven, R., J. Fodor, C. Pres, and K. H. Kogel. 1999. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol. 119: 1251-1260. Hunt, M. D., U. H. Neuenschwander, T. P. Delaney, K. B. Weymann, L. B. Friedrich, K. A. Lawton, H. Y. Steiner, and J. A. Ryals. 1996. Recent advances in systemic acquired resistance research- a review. Gene 179: 89-95. Isono, K., K. Satoh, and H. Kobayashi. 2000. Molecular cloning of a cDNA encoding a novel Ca2+-dependent nuclease of Arabidopsis that is similar to staphylococcal nuclease. Biochim. Biophs. Acta. 1491:267-272. Jeandet, P., A. C. D. Breuil, R. Bessis, S. Debord, M. Sbaghi, and M. Adrian. 2002. Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50: 2731-2741. Kasprzewska, A. 2003. Plant chitinases-regulation and function. Cell Mol Biol Lett. 8: 809-824. Kim, J. A., G. K. Agrawal, R. Rakwal, K. S. Han, K. N. Kim. C. H. Yun, S. Heu, S. Y. Park, Y. H. Lee, and N. S. Jwa. 2003. Molecular cloning and mRNA expression analysis of a novel rice(Oryza sativa L.)MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Bioch. Biophy. Res. Commun. 300:868-876. Kiss, L. 2003. A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Mang. Sci. 59: 479-483. Lamb, C., and R. A. Dixon. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275. Leclercq, J., L. C. Adams-Phillips, H. Zegzouti, B. Jones, A. Latche, J. J. Giovannoni, J. C. Peach, and M. Bouzayen. 2002. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and noval expression patterns in tomato. Plant Physiol. 130: 1132-1142. Lin, Z., R. Hackett, S. Payton, and D. Grierson. 1998. A tomato sequence, TCTR2 (accession No. AJ005077), encoding an Arabidopsis CTR1 homology. Plant Physiol. 117: 1126. Martin, G. B., A. J. Bogdanove, and G. Sessa. 2003. Understanding the function of plant disease resistance proteins. Annu. Rev. Plant Biol. 54: 23-61. Peterhansel, C., A. Freialdenhoven, J. Kurth, R. Kolsch, and P. Schulze-Lefert. 1997. Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 9: 1397-1409. Piffanelli, P., F. Zhow, C. Casais, J. Orme, B. Jarosch, U. Schaffrath, N. C. Collins, R. Panstruga, and P. Schulze-Lefert. 2002. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 129: 1076-1085. Ponting, C. P. 1997. P100, a transcriptional coactivator, is a human homologue of staphylococcal nuclease. Protein Sci. 6: 459-463. Rigden, D. J., M. J. Jedrzejas, and M. Y. Galperin. 2003. An extracellular calcium-binding domain in bacteria with a distant relationship to EF-hands. FEMS. 221: 103-110. Sambrook, J., and D. W. Russel. 2001. Molecular Cloning: A laboratory manual. 3rd edition. Cold Spring Habor Laboratory Press. New York. Vol. I, II, III. Schaller, A., J. Schmid, and N. Amrhein. 1992. Plant cDNA similar to a bacterial plasmid partition locus. Plant Physiol. 99: 777-778. Schmelzer, E. 2002. Cell polarization, a curcial process in fungal defence. Trends plant sci. 7 (9): 411-415. Schulze-Lefert, P., and J. Vogel. 2000. Closing the ranks to attack by powdery mildew. Trends Plant Sci. 5: 343-348 Sommergruber, K. H. 2002. Pathogenesis-related (PR)-proteins identified as allergens. Biochem. Soci. Trans. 30: 930-935. Sticher, L., B. M. Mani, and J. Metraux. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35: 235-270. Tang, D., C. A. Frye, and R. W. Innes. 2005. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol. 138: 1018-1026. Tang, D., C. A. Frye, and R. W. Innes. 2000. Identification of a MAP3 kinase that negatively regulates defense responses in Arabidopsis. 11th international conference of Arabidopsis research. Tang, D., R. W. Innes. 2002. Overexpression of a kinase-deficient form of the EDR1 gene engances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J. 32:975-983. Tena, D., T. Asai, W. L. Chiu, and J. Sheen. 2001. Plant mitogen activated protein kinase signaling cascades. Curr. opin. plant biol. 4:392-400. Tong, X., R. Drapkin, R. Yalamanchill, G. Mosialos, and E. Kieff. 1995. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol. Cell Biol. 15: 4735-4744. von Ropenack, E., A. Parr, and P. Schulze-lefert. 2002. Structural analyses and dynamics of soluble and cell wall-bond phenolics in a broad spectrum resistance to the powdery mildew fngus in barley. J. Biol. Chem. 273: 9013-9022. Warnakulasuriyarachchi, D., N. H. Ungureanu, and M. Holcik. 2003. The translation of an antiapoptotic protein HIAP2 is regulated by an upstream open reading frame. Cell Death Differ. 10: 899-904. Xiao, S., O. Calis, E. Patrick, G. Zhang, P. Charoenwattana, P. Muskett, J. E. Parker, and J. G. Turner. 2005. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J. 42: 95-110. Yakovlev, A. G., G. Wang, B. A. Stoica, H. A. Boulares, A. Y. Spoonde, D. Yoshihara, and M. E. Smulson. 2000. A role of the Ca2+/Mg2+-dependent endonuclease in apoptosis and its ingibition by poly( ADP-ribose ) polymerase. J. Biol. chem.. 275: 21302-21308. Zhang, S., and D. F. Klessig. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6: 520-527. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24252 | - |
| dc.description.abstract | 為取得苦瓜McEDR1基因及其啟動子,選取苦瓜基因組選殖系McEDR97、McEDR111進行定序分析,苦瓜McEDR1基因解碼區(coding region)長10 kb,由13個顯子與12個隱子所組成,可轉譯出一1,000個胺基酸組成的蛋白質,預測之分子量為109.12 kDa,等電點為5.51,並含有一個絲胺酸/蘇胺酸蛋白激酶組區(Serine/Threonine protein kinase domain)。苦瓜McEDR1之胺基酸序列與其他物種相比同源性約46%~51%,歧異主要發生在非激酶組區域。同時得到McEDR1啟動子序列3.1 kb,經cis-acting element保守性序列比對分析顯示,此啟動子可能受到離層酸、乙烯、創傷調控基因表現。利用McEDR1 cDNA全長為探針,對苦瓜全RNA進行北方雜交分析,結果顯示苦瓜McEDR1基因的表現在根中表現較多,而果實中則較少。而苦瓜McEDR1啟動子活性暫時性表達分析結果顯示,苦瓜McEDR1啟動子活性於雄花花瓣中表現量較高;於菸草轉殖植株中則在根部有明顯的表現,阿拉伯芥T1轉殖株在細胞分裂旺盛的生長點,如根毛、側根、芽體及葉基部等處可偵測到GUS活性。
苦瓜McCAN1基因全長4 kb,由9個顯子與8個隱子所銜接,可演繹出344個胺基酸組成的蛋白質,分子量為38 kDa,等電點為9.23,並在C-terminal具有Staphylococcal nuclease (SNase)保守性區域。McCAN1演繹胺基酸序列,與真核生物及原核生物的CAN1同源基因進行比對,結果顯示此基因在真核生物中的保守性約50%~70%,與原核生物相比則只有20%左右,歧異主要發生在N-terminal。另分析苦瓜McCAN11基因之演繹胺基酸轉譯起始密碼上游3.5 kb,根據啟動子序列分析結果,推測McCAN11基因的表現可能受到離層酸、乙烯與創傷等逆境所誘導。利用McCAN1 cDNA全長為探針,對苦瓜全RNA進行北方雜交分析,可知苦瓜McCAN1基因在根部具有最高的表現,莖、雄花與雌花表現次之,於葉及果實表現最少。啟動子活性分析方面,暫時性表現結果顯示,McCAN1::GUS於蝴蝶蘭花瓣,苦瓜雌、雄花花瓣均可偵測GUS活性;菸草之McCAN1::GUS轉殖植株之葉片及根部可偵測到GUS活性,另McCAN1::GUS於阿拉伯芥轉殖株之側根、簇生葉、花序、芽及果柄等處皆有表現。 | zh_TW |
| dc.description.abstract | Two genes from bitter gourd were chosen for further analysis. In order to obtain the promoter and coding sequences encoding Enhanced Disease Resistance 1 (EDR1) homolog from bitter gourd, two genomic clones McEDR97 and McEDR111 isolated from bitter gourd using cDNA as probe were sequenced and characterized. McEDR1 gene snaps about 10 kilobases, including 13 exons and 12 introns. The open reading frame of McEDR1 encodes a 1,000 amino acid with a predicted molecular weight of 109.12 KDa, and isoelectricpoint were 5.51. McEDR1 contained a conserved serine/threonine protein kinase domain in C-terminus. The amino acid sequence of McEDR1 shows 46-51% homology to other EDR1 othologoue whose most dynamics located in N-terminal non-kinase domain. According to the results of sequence analysis, 3.1 kilobases upstream from the translation start site in McEDR1 were 5’untranslate regions and promoter region, and conserved cis-acting elements responsive to abscisic acid, ethylene , and wounding were found in the promoter region. Northern blot analysis indicates that the expression of bitter gourd McEDR1 gene in all organs especially in the stem and female flowers. On the other hand, Arabidopsis transformed with McEDR1::GUS expressed GUS especially in young leaves.
The other gene McCAN1 was homologous to Ca2+-dependent nuclease. McCAN1 sequence obtained 4 kb length and consisted 9 exons and 8 introns of 344 amino acid in McCAN1. Conserved cis-acting elements responsive to ABA, ethylene, and wounding were found in the promoter region of McCAN1. McCAN1 gene was predicted to translated 344 amino acid protein with a molecular mass of 38 KDa. McCAN1 contained a Staphylococcal nuclease homologue (SNase) domain in C-terminus. The amino acid sequence of bitter gourd McCAN1 shows 50-70% homology to other eukaryote organism, and about 20% homology to prokaryote, most dynamics located in N-terminus. Northern blot analysis indicates that the expression of bitter gourd McCAN1 gene in all organs especially in the root, and leaves were much less. According to the results of GUS histochemistry staining in promoter activity analysis, McCAN1::GUS was expressed in inflorescence and roo in Arabidopsis and root, leaf in tobacco transformants. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:19:46Z (GMT). No. of bitstreams: 1 ntu-94-R92628101-1.pdf: 3256775 bytes, checksum: c5340c76fe78149b6c41f5c629e36148 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………3 前言…………………………………………………………………………5 壹、前人研究……………………………………………………………6 一、植物抗白粉病之相關研究…………………………………………6 (一)、瓜類白粉病之危害………………………………………………6 (二)、植物抗病反應……………………………………………………7 (三)、植物抗病反應之訊息傳遞路徑模式……………………………8 (四)、植物MAPK路徑與抗病反應………………………………………9 (五)、阿拉伯芥EDR1基因的分離…………………………………….11 (六)、阿拉伯芥突變株edr1的性狀………………………………….13 (七)、EDR1在抗病訊息傳遞路徑中的功能………………………….16 (八)、利用基因轉殖技術進行抗病育種…………………………….18 二、Ca2+- dependent nuclease…………………………………….19 (一)、核酸分解酶之分類…………………………………………….19 (二)、真核與原核生物Ca2+- dependent nuclease之保守性區域與功能分析……………………………………………………………….20 貳、材料與方法……………………………………………………….22 一、試驗材料………………………………………………………….22 (一)、植物材料……………………………………………………….22 (二)、探針來源……………………………………………………….22 (三)、苦瓜基因組庫………………………………………………….23 二、試驗方法………………………………………………………….23 (一)基因組庫之篩選………………………………………………….23 1.寄主細胞製備……………………………………………………….23 2.核酸探針之製備與標定反應……………………………………….23 3.溶斑雜交法………………………………………………………….24 4.噬菌體之複製……………………………………………………….25 5.噬菌體DNA之抽取……………………………………………………25 6.噬菌體選殖系之歸類……………………………………………….26 (二)限制酶圖譜分析………………………………………………….26 (三)次選殖…………………………………………………………….27 1.大腸桿菌勝任細胞之製備………………………………………….27 2.接合反應及轉形…………………………………………………….27 3.質體DNA之小量製備…………………………………………………28 4.DNA定序………………………………………………………………28 5.啟動子序列分析…………………………………………………….28 (四)南方氏雜交分析………………………………………………….28 (五)轉殖質體之構築………………………………………………….29 1.McEDR1啟動子轉殖質體pGEDR1-p構築…………………………….29 2.McCAN1啟動子轉殖質體pGNu-p構築……………………………….29 3.McEDR1顯性負突變pGEDR1-d轉殖質體構築……………………….30 4.質體DNA之大量製備…………………………………………………30 (六)啟動子暫時性表現分析………………………………………….35 1.微粒子製備與DNA之包裹……………………………………………35 2.基因槍轉殖………………………………………………………….35 3.GUS組織化學染色法…………………………………………………36 (七)農桿菌轉形……………………………………………………….36 1.農桿菌勝任細胞之製備…………………………………………….36 2.轉型反應…………………………………………………………….36 3.農桿菌質體DNA之小量製備…………………………………………37 (八)阿拉伯芥基因轉殖及轉殖株之篩選…………………………….37 1.阿拉芥轉殖………………………………………………………….38 2.轉殖株之篩選……………………………………………………….38 (九)菸草基因轉殖及轉殖株之篩選………………………………….39 (十)北方雜交分析…………………………………………………….37 叁、結果……………………………………………………………….40 一、苦瓜McEDR1基因之選殖與分析………………………………….40 (一)、苦瓜基因組庫之篩選與限制酶圖譜分析…………………….40 (二)、苦瓜McEDR1基因結構序列分析……………………………….40 (三)、苦瓜McEDR1基因啟動子序列資料庫比對分析……………….47 (四)、苦瓜McEDR1基因表現分析…………………………………….47 (五)、苦瓜McEDR1基因啟動子活性分析…………………………….60 二、苦瓜McCAN1基因之選殖與分析………………………………….67 (一)、苦瓜基因組庫之篩選與限制酶圖譜分析…………………….67 (二)、苦瓜McCAN1基因結構序列分析與啟動子序列資料庫比對….67 (三)、苦瓜McCAN1基因表現分析…………………………………….67 肆、討論……………………………………………………………….85 一、EDR1同源基因結構分析………………………………………….85 二、EDR1同源蛋白胺基酸序列之特性……………………………….87 三、EDR1同源基因之表現特性……………………………………….89 四、苦瓜McEDR1啟動子活性分析…………………………………….90 五、CAN1同源基因結構與其蛋白質特性…………………………….91 六、苦瓜McCAN1基因之表現特性與啟動子活性分析……………….93 伍、結語……………………………………………………………….95 陸、參考文獻…………………………………………………………96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 苦瓜 | zh_TW |
| dc.subject | 白粉病 | zh_TW |
| dc.subject | powdery mildew | en |
| dc.subject | bitter gourd | en |
| dc.title | 苦瓜EDR1及CAN1同源基因之選殖與啟動子活性分析 | zh_TW |
| dc.title | Molecular Cloning and Promoter Activity Analysis of Enhanced Disease Resistance 1 and Ca2+-Dependent Nuclease Homologs from Momordica charantia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭隨和(Shui-Ho Cheng),何國傑(Kuo-Chien Ho) | |
| dc.subject.keyword | 苦瓜,白粉病, | zh_TW |
| dc.subject.keyword | bitter gourd,powdery mildew, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
