請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24234
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭博成 | |
dc.contributor.author | Shih-Hsien Ma | en |
dc.contributor.author | 馬世憲 | zh_TW |
dc.date.accessioned | 2021-06-08T05:19:15Z | - |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-29 | |
dc.identifier.citation | [1] 簡嫻雯, “光碟紀錄媒體與材料產業發展現況”, 經濟部科技專案成果, 2002年9月
[2] M. H. Kryder, J. Appl. Phys., 57, 1 (1985) p.3913~3918 [3] T. Suzuki et, Y. Itoh, M. Birukawa, and W. Van Drent, IEEE Trans. On Mahn., 34, 2 (1998) p.399~403 [4] Y. Kasami, Y. Kuroda, K. Seo, O. Kawakubo, S. Takagawa, M. Ono and M. Yamada, Jpn. J. Appl. Phys., 39 (2000) p.756 [5] B. Tieke, M. Dekker, N. Pfeffer, R. Van Wouderberg, G. F. Zhou and I. P. D. Ubbens, Jpn. J. Appl. Phys., 39 (2000) p.762 [6] H. Inoue, H. Hirata, T. Kato, H. Shingai and H. Utsunomyia, Jpn. J. Appl. Phys., 40 (2001) p.1641 [7] Junji Tominaga, Hiroshi Fuji, Akira Sato, Takashi Nakano, and Nobufumi Atoda, Jpn. J. Appl. Phys., part 1, 39 (2000) p.957 [8] Lu Ping Shi, Tow Chong Chong, Xiang Shui Miao, Pik Kee Tan, and Jian Ming Li, Jpn. J. Appl. Phys., part 1, 40 (2001) p.1649 [9] K. Nagata, N. Yamada, K. Nishiuchi, S. Furukawa and N. Akahira, Jpn. J. Appl. Phys, 38(1999) p.1679 [10] J. Hellmig and A. Mijiritskii; Tech. Dig. 2002 Int. Symp. Optical Memory and Optical Data Storage Topical Meet. (ISOM/ODS 2002) p.407 [11] 洪添燦,”碟片多層化儲存技術發展介紹”,工業材料雜誌,172 (2001) p.160 [12] G. F. Zhou, B. A. J. Jacobs, W. van Es-Spiekman, Materials Science and Engineering A226-228 (1997) p.1069-1073 [13] J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, J. Appl. Phys. 78, (1995) p.4918 [14] T. Akiyama, M. Uno, H. Kitaura, K. Narumi, R. Kojima, K. Nishiuchi, and N. Yamada, Jpn. J. Appl. Phys., Part 1, 40, (2001) p.1598 [15] C. M. Lee, T. S. Chin, and E. Y. Huang, J. Appl. Phys. 89, (2001) p.3290 [16] G. F. Zhou and B. A. J. Jacobs, Jpn. J. Appl. Phys., Part 1, 38 (1999) p.1625 [17] N. Yamada, M. Otoba, K. Kawahara, N. Miyagawa, H. Ohta, N. Akahira, and T. Matsunaga, Jpn. J. Appl. Phys., Part 1, 37, (1998) p.2104 [18] C. Trappe, B. Bechevet, B. Hyot, O. Winkler, S. Facsko, and H. Kurz, Jpn. J. Appl. Phys., Part 1, 39 (2000) p.766 [19] S. R. Ovshinsky, Phys. Rev. Lett., 21 (1968) p.1450 [20] J. Feinleib, J. de neufville, S. C. Moss, S. R. Ovshinsky, Appl. Phys. Lett., 18 (1971) p.254 [21] 蔡松雨, 〝相變化材料發展新趨勢〞, 工業材料雜誌第172期 (2001) [22] U.S. patent, US20030059711。 [23] European patent, EP1343154。 [24] Li-Chun Chung, Po-Fan Hsu, Min-Chung Chiu and Bing-Mau Chen, ISOM 2003 We-F-38 [25] L. van Pieterson, M. van Schijndel, and J. C. N. Rijpers, Appl. Phys. Lett., 83(2003) p. 1373-1375 [26] L. van Pieterson and J. C. N. Rijpers, ISOM 2003 Tu-B-01 [27] D. Z. Dimitrov, S. T. Cheng, W. C. Hsu, T. Y. Fang, M. J. Deng and S. Y. Tsai, ODS 2003 p.164 [28] S. Ohara, T. Ishida, C. Inokuchi, T. Furutani, K. Ishibashi, A. Kurahashi, and T. Yoshida, Proc. SPIE Vol. 1499, (1990) p. 187 [29] R. Barton, C. R. Davis, K. Rubin, and G. Lim, Appl. Phys. Lett., vol.48 (1986) p. 1255 [30] J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, B. A. J. Jacobs, and A. H. M. Holtslag, SPIE Proc. Vol.2338 ODS (1994) p.94 [31] M. Chen, K. A. Rubin, and R. W. Barton, Appl. Phys. Letts., 49 (1986) p.502 [32] J. H. Coombs, A.P.J.M. Jongenelis, W. van Es-Spiekman, B.A.J. Jacobs, J. Appl. Phys. 78 (I)(1995) p.4906 [33] M. Chen, K. A. Rubin, and R. W. Barton, Appl. Phys. Lett., 49. (1986) p.50 [34] 周麗新, “可擦拭相轉變型光記錄媒體”, 材料與社會第72期 (1993) p.89 [35] B. Tieke, M. Dekker, N. Pfeffer, R. van Woudenberg, G.-F. Zhou and I. P. D. Ubbens: Proc. SPIE 3864 (1999) p.200 [36] T. Kato, H. Hirata, H. Inoue, H. Shingai, and H. Utsunomia, Technical Digest ISOM 2001 p.200 [37] T. Matsunaga, N. Yamada, PCOS 2003 p.7-12 [38] Norihiko ISHII, Naoki SHIMIDZU, Haruki TOKUMARU, Haruo OKUDA, Akemi HIROTSUNE1, Junko USHIYAMA1, Motoyasu TERAO1 and Takeshi MAEDA1, Jpn. J. Appl. Phys., 40 (2001) p. 1565–1568 [39] Guo-Fu Zhou, Materials Science and Engineering A304-306 (2001) p.73-80 [40] S. R. Ovshinsky, J. Non-cryst. Solids 141 (1992) p.200 [41] Guo-Fu Zhou, Materials Science and Engineering A304-306 (2001) 73-80. [42] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 69 (1991) p.2849. [43] H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, Jpn. J. Appl. Phys. 32 (1993) 5241. [44] Masahiro Okuda, Hiroyoshi Naito and Tatsuhiko Matsushita, Jpn. J. Appl. Phys., 31 (1992) p.466 [45] A. P. J. M. Jongenelis, J. H. Coombs.w.van Es-S piekman, and B. A. J. JacObS, J. Appl. Phys. 79 (1996) p.8349 [46] A. Hirotsune, Y. Miyauchi, and M. Terao, Jpn. J. Appl. Phys., Part 1, No. IB, Januaiy (1996) p.127 [47] Rie KOJIMA, Jpn. J. Appl. Phys., 37 (1998) p.2098-2103 [48] Sang Y. Kim, Jpn. J. Appl. Phys., 38 (1999) p.1713-1714 [49] Hun SEO, Jpn. J. Appl. Phys., 39 (2000) p.745-751 [50] Rie Kojima and Noboru Yamada, Jpn. J. Appl. Phys. 40 (2001) p.5930-5937. [51] C. M. Lee, W. S. Yen, R. H. Liu, T. S. Chin, Jpn. J. Appl. Phys. 40 (2001) p.5321-5325. [52] Tae-Yon Lee, Ki-Bum Kim, Byung-ki Cheong, Taek Sung Lee, Sung Jin Park, Kyeong Seok Lee, Won Mok Kim, Soon Gwang Kim, Appl. Phys. Letts., 80 (2002) p.3313-3315 [53] D. Dimitrov and H. P. D. Shieh, Materials Science and Engineering B107 (2003) p.107-111 [54] Toshiyuki Matsunaga and Noboru Yamada, ISOM 2003 Tu-C-05 [55] Junji Tominaga, Tokuhiko Handa, Susumu Haratani and Suguru Takayama, Jpn. J. Appl. Phys. 32 (1993) p.1980-1982 [56] Y. C. Her and Y. S. Hsu, Jpn. J. Appl. Phys. 42(2003) p. 804-808 [57] H. Shingai, T. Kato, H. Inoue, H. Hirata, H. Utsunomiya, H. Chihara, and Y. Tanaka, ODS 2003 p.85 [58] B. Liu and F. X. Gan, Appl. Phys. A77 (2003) p.905-909 [59] Tung Ti Yeh, Tsung Eong Hsieh and Han Ping D. Shieh, Jpn. J. Appl. Phys. 43(2004) p. 5316-5320 [60] D. Z. Dimitrov, C. Babevab, S.-T. Chenga, W.C. Hsu, M.-H. Hsieha, S.-Y. Tsaia, http://www.epcos.org/pdf_2004/13paper_dimitrov.pdf [61] Y. C. Her, H. Chen, and Y. S. Hsu, J. Appl. Phys. Vol.93 (2003) p.10097, [62] F. Jiang and M. Okuda, Jpn. J. Appl. Phys. 30(1991) p. 97-100 [63] D. E. Newbury, D. C. Joy, P. Echlin, C. E. Fiori and J. I. Goldstein, “ Advanced Scanning electron Microscopy and X-ray Microanalysis ”, New York : Plenum Press (1987) [64] N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, J. Appl. Phys. Vol.69 No.5 (1991) p.2849 [65] Alan B. Marchant, “Optical Recording: A Technical Overview”, Addison-Wesley (1990) [66] M. Libera, and M. Chen, J. Appl. Phys. 73(5), (1993) p.2272 [67] 陳力俊, “材料電子顯微鏡學” , (1990) p76 [68] K. A. Rubin, Mat. Res. Soc. Symp. Proc., Vol. 230, (1992) p. 239 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24234 | - |
dc.description.abstract | 開發具有高結晶速率的相變化材料以應用在高倍速相變化光碟片是可複寫相變化光碟的發展目標之ㄧ。本實驗以直流磁控共鍍的方式鍍製(GeSbSn)100-xMx薄膜(M=Ta、Fe、Ru、Ni或Co)於Si基板及玻璃基板上,藉由薄膜熱性質分析結果篩選出(GeSbSn)100-xFex與(GeSbSn)100-xCox薄膜作進一步的研究,探討GeSbSn薄膜添加Fe或Co後光學性質與熱性質的改變,以及其應用在可複寫光記錄媒體的可行性。
熱分析實驗結果發現添加Fe或Co會使薄膜相變化溫度與活化能下降,顯示添加Fe或Co會提高薄膜結晶速率。光譜分析結果顯示,(GeSbSn)100-xFex與(GeSbSn)100-xCox薄膜具有良好之光吸收率,但當x=8.20~16.75 at.%時,(GeSbSn)100-xCox薄膜反射率對比值則隨著Co含量增加而降低。而添加Fe之薄膜則當Fe含量為7.10~9.75 at.%時對比值增加,當Fe含量大於12.91 at.%時對比值反而降低。由XRD結構分析結果顯示,初鍍(GeSbSn)100-xFex薄膜(x=0~22.93)與(GeSbSn)100-xCox薄膜(x=0~16.75)均為非晶質結構。經過250℃,30分鐘熱處理後,薄膜產生結晶,其中(GeSbSn)100-xFex薄膜(x=0~9.75)結晶相主要仍是Sb相,當Fe含量大於16.63 at.%時,薄膜結晶相至少包含Sb、Fe與FeSb相;(GeSbSn)100-xCox薄膜中,當Co含量大於8.20 at.%時,薄膜結晶相包含Sb與CoSb3相。由TEM觀察薄膜微結構,GeSbSn薄膜經過250℃,30分鐘熱處理後之平均晶粒大小約為27.9nm,添加7.10 at.%的Fe後晶粒變小,平均晶粒大小約為17.6nm,而當Fe含量增加為16.63 at.%時,晶粒大小約為30.1nm。另外,添加9.79 at.%的Co後晶粒變小,平均晶粒大小約為16.8nm,但呈現較不規則狀。當Co含量為16.75 at.%時晶粒發生不規則成長,晶粒大小約介於30~200nm,平均晶粒大小約為96nm。 | zh_TW |
dc.description.abstract | One of the main development in rewritable phase change optical disk is to find out high crystallization speed materials for high-speed phase change optical disk application. In this study, (GeSbSn)100-xMx thin films (M=Ta、Fe、Ru、Ni or Co) are deposited on nature-oxidized Si wafer and glass substrates by DC magnetron co-sputtering. From the thermal analysis, we choose (GeSbSn)100-xFex and (GeSbSn)100-xCox thin films to investigated the effects of Fe or Co on the optical properties and microstructures of these films, and investigate its possibility for rewritable phase change optical media application.
Thermal analysis shows that doping Fe or Co into GeSbSn thin film can decrease the activation energy and phase change temperature of the film. This indicates that the crystallization speed of the GeSbSn film will be increased. The optical property analysis shows that (GeSbSn)100-xFex and (GeSbSn)100-xCox films have good absorption. The optical contrast of (GeSbSn)100-xCox film decreases with increasing Co conent as x = 8.20~16.75. The optical contrast of (GeSbSn)100-xFex film increases with Fe content as x in the range of 7.10~9.75 but decreases with Fe content when x=12.91~16.63. The X-ray diffraction analysis shows that the as-deposited (GeSbSn)100-xFex and (GeSbSn)100-xCox films are amorphous structure. After annealing at 250℃ for 30 min, the major crystalline phase of (GeSbSn)100-xFex film (x=0~9.75) is Sb. The Sb、Fe and FeSb crystalline phases are appeared as x>16.63. After same annealing condition, the Sb and SbCo3 crystalline phase are found in the (GeSbSn)100-xCox film (x>8.20). The TEM analysis shows that the average grain size of the GeSbSn film is about 27.9 nm after annealing at 250℃ for 30 min. After doping Fe, average grain size of the GeSbSn film is decreased, it decreases to 17.6 nm as 7.10 at.% Fe is added. However, the grain size is increased to about 30.1 nm when 16.63 at.% Fe is added. On the other hands, as 9.79 at.% Co is doped into the GeSbSn film, average grain size of the film is decreased to about 16.8 nm, and the grain shape is irregular. When 16.75 at.% Co is added, the grain grows irregularly, the grain size is in the range of 30 to 200 nm and the average size is about 96 nm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:19:15Z (GMT). No. of bitstreams: 1 ntu-94-R92527021-1.pdf: 4231708 bytes, checksum: cf5eae7ff96ee079c19eac1e03124be2 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 圖目錄 VIII 表目錄 XVI 第一章 前言 1 第二章 理論基礎與文獻回顧 5 2-1 理論基礎 5 2-1-1 相變化光碟的讀寫原理 5 2-1-2 相變化記錄層材料的特性要求 7 2-1-3 相變化光碟之各層結構與特性 10 2-1-4 提升相變化光碟記錄速率的方法 13 2-1-5 計量型GeSbTe與共晶Sb-Te的特性比較 16 2-2 文獻回顧 22 2-2-1 添加元素對計量型GeSbTe結晶速率之影響 23 2-2-2 添加元素對共晶Sb-Te系統結晶速率之影響 29 2-2-3 不含Te之高結晶速率相變化材料 32 2-3 研究方向 34 第三章 實驗方法與步驟 37 3-1 實驗流程 37 3-2 試片製備 38 3-2-1 靶材選取 38 3-2-2 基板前處理 39 3-3 試片性質量測 43 3-3-1 薄膜厚度量測 43 3-3-2 薄膜成份分析 45 3-3-3薄膜相變化溫度量測 45 3-3-4薄膜光學性質分析 47 3-3-5薄膜結晶結構分析 47 3-3-6薄膜顯微組織觀察 48 第四章 結果與討論 50 4-1 添加高熔點元素對GeSbSn合金薄膜熱性質的影響 50 4-2 (GeSbSn)100-xFex及(GeSbSn)100-xCox合金薄膜的製備 58 4-2 薄膜成份分析結果 61 4-3 薄膜活化能分析 62 4-3-1 (GeSbSn)100-xFex薄膜活化能分析 63 4-3-2 (GeSbSn)100-xCox薄膜活化能分析 64 4-4 薄膜光譜分析結果 78 4-4-1 反射率 78 4-4-2 吸收率 84 4-5 薄膜微結構分析結果 100 4-5-1 結晶結構分析結果 100 4-5-2 顯微組織觀察結果 109 第五章 結論 119 參考文獻 122 | |
dc.language.iso | zh-TW | |
dc.title | 添加高熔點元素對GeSbSn相變化光碟薄膜之光學性質及微結構的影響 | zh_TW |
dc.title | Effects of high melting point element dopant on the optical properties and microstructure of the GeSbSn phase change optical disk films | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蔣東堯 | |
dc.contributor.oralexamcommittee | 黃暉理,劉黃升 | |
dc.subject.keyword | 相變化光碟, | zh_TW |
dc.subject.keyword | phase change optical disk, | en |
dc.relation.page | 127 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2005-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 4.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。