請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳延平(Yang-Ping Chen) | |
| dc.contributor.author | Yun-Ping Chang | en |
| dc.contributor.author | 張雲評 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:19:11Z | - |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-29 | |
| dc.identifier.citation | Adrian, T. and Maurer, G., Solubility of carbon dioxide in acetone and propionic acid at temperatures between 298 K and 333 K, Journal of Chemical Engineering Data, 42, 1997, 668-672
Bilodeau, J., Effects of nonsteroidal anti-inflammatory drugs on oxidative pathways in A/J mice, Journal of Biology and Medicine, 18, 1995, 47-54 Bleich, J. and Muller, B., Production of drug loaded microparticles by the use of supercritical gases with the aerosol solvent extraction system process, Journal of Microcapsulation, 13, 1996, 131-139 Chattopadhyay, P and Gupta, R., Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer, Industrial & Engineering Chemistry Research, 40, 2001a, 3530-3539 Chattopadhyay, P. and Gupta, R., Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer, International Journal of Pharmaceutics, 228, 2001b, 19-31 Chen, K., Zhang, X., Panb, J., Zhang, W. and Yinc, W., Gas antisolvent precipitation of Ginkgo ginkgolides with supercritical CO2, Powder Technology, 152, 2005, 127-132 Cocero, M. J. and Ferrero, S., Crystallization of β-Carotene by a GAS process in batch effect of operating conditions, Journal of Supercritical Fluids, 22, 2002, 237-245 Craig, D., Royall, P., Kett, V. and Hopton, L., The relevance of the amorphous state to pharmaceutical dosage forms glassy drugs and freeze dried systems, International Journal of Pharmaceutics, 179, 1999, 179–207 Day, C. Y., Chang, C. J. and Chen, C. Y., Phase equilibrium of ethanol + CO2 and acetone + CO2 at elevated pressures, Journal of Chemical Engineering Data, 41, 1996, 839-843 Dukhin, S., Zhu, C., Dave, R., Pfeffer, R., Luo, J., Chavez, F. and Shen,Y., Dynamic interfacial tension near critical point of a solvent-antisolvent mixture and laminar jet stabilization, Collids and Surfaces A: Physicochemical and Engineering Aspects, 229, 2003, 181-199 Edwards, A., Shekunov, B., Kordikowski, A., Forbes, R. and York, P., Crystallization of pure anhydrous polymorphs of carbamazepine by solution enhanced dispersion with supercritical fluids (SEDSTM). Journal of Pharmaceutical Science 90, 2001, 1115–1124 Foster, N., Mammucari, R., Dehghani, F., Barrett, A., Bezanehtak, K., Coen, E., Combes, G., Meure, L., Aaron Ng, Regtop, H. and Tandya, A., Processing pharmaceutical compounds using dense gas technology, Industrial & Engineering Chemistry Research, 2003, 42, 6476-6493 Gennaro, A., Remington's Pharmaceutical Sciences, Chapter 35, 17th ed., 1985, Mack Publishing Co. Gioannis, B., Jestin, P., Subra, P., Morphology and growth control of griseofulvin recrystallized by compressed carbon dioxide as antisolvent, Journal of Crystal Growth, 262, 2004, 519-526 Gu, C. H. and Grant, D., Estimating the relative stability of polymorphs and hydrates from heats of solution and solubility, Journal of Pharmaceutical Science, 90, 2001, 1277-1287 Haleblian, J., Characterization of habits and crystalline modification of solids and their pharmaceutical applications, Journal of Pharmaceutical Sciences, 64, 1975, 1269-1288 He, W. Z., Suo, Q. L. Jiang, Z. H., A, S., Hong, H.L., Precipitation of ephedrine by SEDS process using a specially designed prefilming atomizer, Journal of Supercritical Fluids, 31, 2004, 101-110 Hong, L., Guo, J., Gao, Y. and Yuan, W. K., Precipitation of microparticulate organic pigment powders by a supercritical antisolvent process, Ind. Eng. Chem. Res., 39, 2000, 4882-4887 Jarmer, D., Lengsfeld, C., and Randolph, W., Manipulation of particle size distribution of poly(l-lactic acid) nanoparticles with a jet-swirl nozzle during precipitation with a compressed antisolvent, Journal of Supercritical Fluids, 27, 2003, 317-336 Jung, J., and Perrut, M., Particle design using supercritical fluids: Literature and patent survey, Journal of Supercritical Fluids, 20, 2001, 179-219 Kayrak, D., Akman, U. and Hortacsu, O., Micronization of ibuprofen by RESS, Journal of Supercritical Fluids, 26, 2003, 17-31 Kerc, J., Srcic, S., Knez, Z. and Sencar-Bozic, P., Micronization of drugs using supercritical carbon dioxide, International Journal of Pharmaceutics, 182, 1999, 33–39 Krober, H. and Teipel, U., Materials processing with supercritical antisolvent precipitation: process parameters and morphology of tartaric acid, Journal of Supercritical Fluids 22, 2002, 229-235 Lefebvre, A., Atomization and sprays, 1989, Hemisphere Pub. Leon, S. and Andrew, Y., Applied biopharmaceutics and pharmacokinetics, 4th ed., 1999, McGraw-Hill. Leuner, C. and Dressman, J., Improving drug solubility for oral delivery using solid dispersions, Eroupean Journal of Pharmaceutics and Biopharmaceutics. 50, 2000, 47-60 Molina, M., Blanco, S. and Ferretti, F., Structure and UV solvatochromic shifts of sulfamethoxazole in alcoholic solvent and water, Journal of Molecular Structure: Theochem, 582, 2002, 143-157 Montgomery, D., Runger, G. and Hubble, N., Engineering statistics, 2nd ed., 2000, John Wiley & Sons, Inc. Montgomery, D. Design and analysis of experiments, 5th ed., 2001, John Wiley & Sons, Inc. Mosharraf, M. and Nystrom, C., The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs, International Journal of Pharmaceutics, 122, 1995, 35–47 Moshashaee S., Bisrat, M., Forbes, R. T., Nyqvist, N. and York, P., Supercritical Fluid Processing of Proteins:Lysozyme Precipitation from Organic Solution, European Journal of Pharmaceutical Science, 11, 2000, 239-245 Maury, L., Rambaud, J., Pauvert, B., Lasserre, Y., Audran, B. Berge, G. and Audran, M., Etude physcio-chimique, specters de vibration et structure du sulfamethoxazole, Canadian Journal of Chemistry, 63, 1985, 3012-3018 Muller, M., Meier, U., Kessler, A., and Mazzotti, M., Experimental study of the effect of process parameters in the recrystallization of an organic compound using compressed carbon dioxide as antisolvent, Industrial & Engineering Chemistry Research, 39, 2000, 2260-2268 Perrut M., Jung, J. and Leboeuf, F., Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes Part I: Micronization of neat particles, International Journal of Pharmaceuticals, 288, 2005, 3-10 Reverchon, E. Supercritical antisolvent precipitation of micro and nanoparticles, Journal of Supercritical Fluids, 15, 1999a, 1-21 Reverchon, E. and Della Porta, G., Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation, Powder Technology, 106, 1999b, 23-29 Reverchon, E., Della Porta, G. and Falivene, M. G., Process parameters and morphology in amoxicillin micro and submicro particles generation by supercritical antisolvent precipitation, Journal of Supercritical Fluids, 17, 2000, 239-248 Reverchon, E., Della Porta, G. and Pallado, P., Supercritical antisolvent precipitation of salbutamol microparticles, Powder Technology, 114, 2001, 17-22 Reverchon, E., De Marco, I., and Della Porta, G., Rifampicin microparticles production by supercritical antisolvent precipitation, International Journal of Pharmaceutics, 243, 2002, 83-91 Reverchon, E., Caputo, G. and De Marco, I. Role of phase behavior and atomization in the supercritical antisolvent precipitation. Industrial & Engineering Chemistry Research, 2003a, 42, 6406-6414 Reverchon, E., Della Porta, G., Caputo, G. and Pallado, P., Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation, Journal of Supercritical Fluids, 26, 2003b, 1-7 Reverchon, E. and De Marco, Supercritical antisolvent micronization of Cefonicid- thermodynamic interpretation of results, Journal of Supercritical Fluids, 31, 2004, 207-215 Shekunov, B. and York, P., Crystallization processes in pharmaceutical technology and drug delivery design, Journal of Crystal Growth, 211, 2000, 122-136 Shekunov, B., Baldyga, J. and York, P., Particle formation by mixing with supercritical antisolvent at high Reynolds numbers, Chemical Engineering Science, 56, 2001, 2421-2433 Snavely, W. K., Subramaniam, B., Rajewski, R. A., and Defelippis, M. R., Miconization of isulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent, Journal of Pharmaceutical Science, 91, 9, 2002, 2026-2039 Subra, P. and Jestin, P., Screening Design of Experiment (DOE) Applied to supercritical antisolvent Process, Industrial & Engineering Chemistry Research, 39, 2000, 4178-4184 Subra, P., Berroy, P., Vega, A., Domingo, C., Process performances and characteristics of powders produced using supercritical CO2 as solvent and antisolvent, Powder Technology, 142, 2004, 13-22 Teja, A .S. and Eckert, C. A., Commentary on supercritical fluid research and applications, Industrial & Engineering Chemistry Research, 39, 2000, 4442-4444 The United States Pharmacopeia, Section:Test Solutions, 20th revision, 1980, United States Pharmacopeial Convention, Inc. Thiering, R. Dehghani, F, Dillow, A and Foster, N.R., Solvent effects on the controlled dense gas precipitation of model proteins , Journal of Chemical Technology and Biotechnology, 75, 2000, 42-53 Thiering, R., Dehghani, F. and Foster, N., Current issues relating to anti-solvent micronization techniques and their extension to industrial scales, Journal of Supercritical Fluids, 21, 2001, 159-177 Thiering, R., Dehghani, F., Dillow, A. and Foster, N. R., The influence of operating conditions on the dense gas precipitation of model proteins, Journal of Chemical Technology and Biotechnology, 75, 2000, 29-41 Tu, L., Dehghani, F. and Foster, N., Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent, Powder Technology, 126, 2002, 134-149 Velaga, S., Ghaderi, R., Carlfors, J., Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process, International Journal of Pharmaceutics, 245, 2002, 75-82 Ventosa, N., Sala, S. and Veciana, J., Depressurization of an expanded liquid organic solution (DELOS): A new procedure for obtaining submicron- or micron-sized crystalline particles, Crystal Growth and Design, 1, 2001, 299-303 Warwick, B., Dehghani, F. and Foster, N. R., Micronization of copper indomethacin using gas antisolvent processes, Industrial & Engineering Chemistry Research, 8, 2002, 1993-2004 Wubbolts, F., Bruinsma, O. and G.M. van Rosmalen, Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide, Journal of Crystal Growth 198/199, 1999, 767-772 Yeo, S. D. and Lee, J. C., Crystallization of sulfamethizole using the supercritical and liquid antisolvent processes, Journal of Supercritical Fluids, 30, 2004, 315-323 York, P., Strategies for particle design using supercritical fluids technology, Pharmaceutical Science & Technology Today, 2, 11, 1999, 430-440 Young, T., Mawson, S., Johnston, K., Henriksen, I., Pace, G. and Mishra, K., Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-soluble drugs, Biotechnology Progress, 16, 2000, 402-407 蘇至善,以批式超臨界反溶劑沉積法進行非類固醇抗發炎藥之再結晶研究,國立台灣大學化學工程學研究所碩士論文,2003 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24232 | - |
| dc.description.abstract | 本研究以連續式超臨界反溶劑(Supercritical Anti-Solvent, SAS)沉積法對抗生素(Sulfamethoxazole與Sulfaphenazole)與非類固醇抗發炎藥(Acetaminophen與Sulidac)進行微粒化,並與批式超臨界反溶劑沉積法得到的結果比較,發現連續式SAS操作較批式SAS操作能得到更小的藥物微粒。其後選定Sulfamethoxazole為目標藥物,利用實驗設計法,進行批式與連續式SAS操作參數效應分析。在批式操作中,乙酸乙酯為最佳溶劑,於較低溶液濃度下有利小顆粒之生成。而在連續式操作中,丙酮為最佳溶劑,於低溶液流率與高溶液濃度下操作有利小顆粒之生成。經由連續式操作得到的Sulfamethoxazole藥物之溶解速率與抗菌效果,較原始藥物分別提升約5倍與3倍。此外,本研究亦探討將Hydroxypropylcellulose加入Sulfamethoxazole藥物溶液中,進行連續式SAS操作,與藥物共沉澱之可行性。結果發現共沉澱藥物的溶解速率,較原始藥物提升約50倍。 | zh_TW |
| dc.description.abstract | Micronization of the antibiotics (Sulfamethoxazole and Sulfaphenazole) and the non-steroidal anti-inflammatory drugs (Acetaminophen and Sulindac) were investigated in this study using the batch and continuous supercritical carbon dioxide anti-solvent (SAS) precipitation method. Particles produced by the continuous SAS are smaller than those produced by the batch ones. Crystal structure of sulfamethoxazole analyzed by XRD showed the solid-solid transition after the batch SAS process.
The effect of the process parameters were compared using sulfamethoxazole as model drug. In the batch SAS process, using ethyl acetate as solvent at low concentration favors smaller particle formation while in the continuous SAS process, acetone as solvent was suggested and operating at lower solution flow rate and higher concentration favored smaller particle formation. The micronized sulfamethoxazole exhibits a higher dissolution rate and antibacterial performance. The dissolution test demonstrated the use of additives in drug formulation can be avoided when the SAS processed drug is used. Coprecipitation of sulfamethoxazole and hydroxypropylcellulose (HPC) by the continuous SAS process was also investigated. The dissolution rate of sulfamethoxazole was dramatically enhanced after Coprecipitating with HPC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:19:11Z (GMT). No. of bitstreams: 1 ntu-94-R92524070-1.pdf: 1849069 bytes, checksum: 0b155bd2f63ac58c6befb3eb4c85edc0 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目 錄
中文摘要 I 英文摘要 II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1超臨界流體簡介 1 1-2超臨界流體應用於微粒化技術 2 1-3藥物溶解動力學 8 1-4超臨界反溶劑沉積法應用於藥物微粒化 10 1-5目標藥物介紹 12 第二章 實驗方法 16 2-1實驗裝置 16 2-1-1批式超臨界反溶劑實驗裝置 16 2-1-2連續式超臨界反溶劑實驗裝置 18 2-2 操作步驟 19 2-2-1批式超臨界反溶劑沉積操作步驟 19 2-2-2連續式超臨界反溶劑沉積操作步驟 22 2-3 分析方法 24 2-4 藥性分析方法 26 2-4-1溶解速率試驗 26 2-4-2抗菌試驗 27 2-5 實驗設計與實驗藥品 27 第三章 結果與討論 30 3-1超臨界反溶劑微粒化結果 30 3-2批式超臨界反溶劑操作參數探討 34 3-3連續式超臨界反溶劑操作參數探討 37 3-4藥物溶解速率與抗菌測試 44 3-5添加劑與共沉澱效應 46 第四章 結論 49 參考文獻 93 附錄 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 藥物 | zh_TW |
| dc.subject | 微粒化 | zh_TW |
| dc.subject | 超臨界反溶劑 | zh_TW |
| dc.subject | Antisolvent | en |
| dc.subject | Supercritical | en |
| dc.subject | Pharmaceutical | en |
| dc.subject | Micronization | en |
| dc.title | 以超臨界反溶劑沉積法進行藥物微粒化之研究 | zh_TW |
| dc.title | Micronization of Pharmaceutical Compounds Using Supercritical Anti-Solvent Precipitation Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳立仁(Li-Jen Chen),李夢輝(Meng-Hui Li) | |
| dc.subject.keyword | 超臨界反溶劑,藥物,微粒化, | zh_TW |
| dc.subject.keyword | Supercritical,Antisolvent,Pharmaceutical,Micronization, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
