Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24208
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳延平
dc.contributor.authorHsin-Yan Luen
dc.contributor.author呂信諺zh_TW
dc.date.accessioned2021-06-08T05:18:32Z-
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-30
dc.identifier.citation參考文獻
Adschiri, T., Kanazawa, K., Arai, K., Rapid and Continuous Hydrothermal Crystallization of Metal Oxide Particles in Supercritical Water. Journal of the American Ceramic Society. 1992(a), 75, 1019-1023
Adschiri, T., Kanazawa, K., Arai, K., Rapid and Continuous Hydrothermal Synthesis of Boehmite Particles in Subcritical and Supercritical Water. Journal of the American Ceramic Society. 1992(b), 75, 2615-2620
Adschiri, T., Hakuta, Y., Arai, K., Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions. Industrial & Engineering Chemistry Research. 2000, 39, 4901-4907
Anno, Y., Maekawa, T., Tamaki, J., Asano, Y., Hayashi, K., Miura, N., Yamazoe, N., Zinc-oxide-based Semiconductor Sensors for Detecting Acetone and Capronaldehyde in the Vapour of Consommé Soup. Sensors and Actuators B. 1995, 24-25, 623-627
Antal, M. J., Jr., Allen, S. G., Schulman, D., Xu, X., Divilio, R J., Biomass Gasification in Supercritical Water. Industrial & Engineering Chemistry Research. 2000, 39, 4040-4053
Arai, K., Phase Behavior of Hydrothermal Environments for Producing Inorganic Fine Particles and Nanocrystals. Proc. 8th Meeting on Spercritical Fluids, Bordeaux, France, 2002, 23-30
Arai, Y., Sako, T., Takebayashi, Y. (Eds.), Supercritical Fluid Molecular Interactions, Physical Properties and New Applications . 2000, Berlin, Springer.
Aymonier, C., Schlotterbeck, U., Antonietti, L., Zacharias, P., Thomann, R., Tiller, J. C., Mecking, S., Hybrids of Silver Nanoparticles with Amphiphilic Hyperbranched Macromolecules Exhibiting Antimicrobial Properties. Chemical Communications. 2002, 3018–3019
Bulte, J. W. M., Cuyper, M. D., Despres, D., Frank, J. A., Preparation, Relaxometry, and Biokinetics of PEGylated Magnetoliposomes as MR Contrast Agent. Journal of Magnetism and Magnetic Materials. 1999, 194, 204–209
Cabanas, A., Poliakoff, M., The Continuous Hydrothermal Synthesis of Nano-particulate Ferrites in Near Critical and Supercritical Water. Journal of Materials Chemistry. 2001, 11, 1408-1416
Condorelli, G, G., Costanzo, L, L., Fragala, I, L., Giuffrida, S., Ventimiglia, G., A Single Photochemical Route for the Formation of Both Copper Nanoparticles and Patterned Nanostructured Films. Journal of Materials Chemistry. 2003, 13, 2409–2411
Cote, L. J., Teja, S., Angus, P., Zhang, Z. J., Comtinuous Hydrothermal Synthesis and Crystallization of Magnetic Oxide Nanoparticles. Journal of Maters Chemistry. 2002, 17, 2410-2416
Cote, L. J., Teja, S., Angus, P., Zhang, Z. J., Comtinuous Hydrothermal Synthesis of CoFe2O4 Nanoparticles. Fluid Phase Equilibria. 2003, 210, 307-317
Ding, Y., Zhang, G., Wu, H., Hai, B., Wang, L., Qian, Y., “Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis.” Chem. Mater. 2001, 13, 435-440
Feng, J., Aki, S. N. V. K., Chateauneuf, J. E., Brennecke, J. F., Abstraction of Hydrogen from Methanol by Hydroxyl Radical in Subcritical and Supercritical Water. Journal of Maters Chemistry. 2003, 107, 11043-11048
Fukuoka, A., Araki, H., Kimura, J., Sakamoto, Y., Higuchi, T., Sugimoto, N., Inagaki, S., Ichikawa, M., Template Synthesis of Nanoparticle Arrays of Gold, Platinum and Palladium in Mesoporous Silica Films and Powders. Journal of Materials Chemistry. 2004, 14, 752-756
Guo, W., Datye, A. K., Ward, T. L., Synthesis of Barium Titanate Powders by Aerosol Pyrolysis of a Pechini-type Precursor Solution. Journal of Maters Chemistry. 2005, 15, 470-477
Gusev, E. P., Copel, M., Cartier, E., High-resolution Depth Profiling in Ultrathin Al2O3 Films on Si. Applied Physics Letters. 2000, 76, 176-178
Hakuta, Y., Adschiri, T., Suzuki, T., Chida, T., Seino, K., Arai K., Flow Method for Rapidly Producing Barium Hexaferrite Particles in Sipercritical Water. Journal of the American Ceramic Society. 1998(a), 81, 2461-2464
Hakuta, Y., Onai, S., Terayama, H., Adschiri, T., Arai, K., Production of Ultra-fine Particles by Hydrothermal Synthesis Under Supercritical Condition. Journal of Materials Science Letters. 1998(b), 17, 1211-1213
Hakuta, Y., Seino, K., Ura, H., Adschiri, T., Takizawa, H., Arai, K., Production of Phosphor (TAG/Tb) Fine Particles by Hydrothermal Synthesis in Supercritical Water. Journal of Maters Chemistry. 1999, 9, 2671-2675
Hakuta, Y., Ura, H., Hayashi, H., Arai, K., Effect of Water Density on Polymorph of BaTiO3 Nanoparticles Synthesized under Sub and Supercritical Water Conditions. Materials Letters. 2005, 59, 1387-1390
Han, B. H., Antonietti, M., One-step Synthesis of Copper Nanoparticles Containing Mesoporous Silica by Nanocasting of Binuclear Copper(II) Complexes with Cyclodextrins. Journal of Materials Chemistry. 13, 2003, 1793-1796
Herricks, T., Chen, J., Xia, Y., Polyol Synthesis of Platinum Nanoparticles: Control of Morphology with Sodium Nitrate. Nano Letters. 2004, 12, 2367-2371
Ingelsten, H. H., Be´ziat, J. C., Bergkvist, K., Palmqvist, A., Skoglundh, M., Qiuhong H., Falk, L. K. l., Holmberg, K., Deposition of Platinum Nanoparticles, Synthesized in Water-in-Oil Microemulsions, on Alumina Supports. Langmuir, 2002, 18, 1811-1818
Joo, J., Yu, T., Kim, Y. W., Park, H. M., Wu, F., Zhang, J. Z., Hyeon, T., Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. Journal of American Chemical Society. 2003, 125, 6553-6557
Josephson, L., Tsung, C. H., High-efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic Tat Peptide Conjugates. Bioconjugate Chemistry. 1999, 10, 186

Jung, J., Perrut, M., Particle Design Using Supercritical Fluids: Literature and Patent Survey. The Journal of Supercritical Fluids. 2001, 20, 179-219
Kanamura, K., Goto, A., Ho, R. Y., Umegaki, T., Toyoshima, K., Okada, K., Hukuta, Y., Adschiri, T., Arai, K., Preparation and Electrochemical Characterization of LiCoO2 Particles Prepared by Supercritical Water Synthesis. Electrochemical and Solid-State Letters. 2000, 6, 256-258
Kaneko, D., Shouji, H., Kawai, T., Kon-No, K., Synthesis of ZnO Particles by Ammonia-Catalyzed Hydrolysis of Zinc Dibutoxide in Nonionic Reversed Micelles. Langmuir. 2000, 16, 4086-4089
Kang, K., Sato, N., Fujie, K., Development of Marine Waste Recycling Technologies Using Sub- and Supercritical Water. Journal of Chemical Engineering of Japan. 2001, 34, 1091-1096
Korgel, B. A., Shah, P. S., Pell, L. E., Johnston, K. P., Nanocrystal Stabilization and Synthesis in Supercritical Solvents Proceeding. 4th International Symposium on High Pressure Technology and Chemical Engineering, Venice, Italy, September, 2002, 22-25
Kurbitz, S., Porstendorfer, J., Berg, K. J., Berg, g., Determination of Size and Concentration of Copper Nanoparticles Dispersed in Glasses Using Spectroscopic Ellipsometry. Applied Physics B – Lasers and Optics. 2001, 73, 333–337
Matsumura, M., Nunoura, T., Urase, T., Yamamoto, K., Supercritical Water Oxidation of High Concentrations of Phenol. Journal of Hazardous Materials. 2000, 28, 245-254
Mitrikas, G., Trapalis, C. C., Kordas, G., Tailoring the Particle Size of Sol-gel Derived Silver Nanoparticles in SiO2. Journal of Non-Crystalline Solids. 2001, 286, 41-50
Nayral, C. , Ould-Ely, T., Maisonnat, A., Chaudret, B., Fau, P., Lescouzères, L., Peyre-Lavigne, A., A Novel Mechanism for the Synthesis of Tin / Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors. Advanced Materials. 1999, 11, 61-63
Ohde, H., Ohde, M., Bailey, F., Kim, H., Wai, C.M., Water-in-CO2 Microemulsions as Nanoreactors for Synthesizing CdS and ZnS Nanoparticles in Supercritical CO2. Nanoletters. 2002, 2, 721-724
Pitkanen, I., Huttunen, J., Vesterinen, R., Evolved Gas of Some Solid Fuels by TG-FTIR. Journal of Thermal Analysis and Calorimetry. 1999, 56, 1253-1259
Qi, L., Ma, J., Shen, J., Synthesis of Copper Nanoparticles in Nonionic Water-in-Oil Microemulsions. Journal of Colloid and Interface Science. 1997, 186, 498-450
Rodríguez-Paéz, J.E., Caballero, A.C., Villegas, M., Moure C., Durán, P., Fernández, J.F., Controlled Precipitation Methods: Formation Mechanism of ZnO Nanoparticles. Journal of the European Ceramic Society. 2001, 21, 925-930
Reverchon, E., Supercritical Antisolvent Precipitation of Micro- and Nano-particles. The Journal of Supercritical Fluids. 1999, 15, 1-21
Schmieder, H., Abeln, J., Supercritical Water Oxidation: State of the Art. Chemical Engineering and Technology. 1999, 22, 903-908
Shigeyuki, S., R, Rustum., Hydrothermal Synthesis of Fine Oxide Powders. Bulletin of Materials Science. 2000, 23, 453-460
Spanhel, L., Anderson, M.A., Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated ZnO Colloids. Journal of the American Ceramic Society. 1991, 113, 2826-2833
Sue K, M. Aida.,Y. Hakuta.,R. L. Smith., Jr., T. Adschiri K. Arai., Measurment And Correlation of Metal Oxide Solubility In Sub- And Supercritical Water. Proceedings of the 13th International Conference on the Properties of Water and Steam, NRC Research Press, Ottaea, 2000, 782-787
Sue, K. Kakinuma, N. Adschiri, T. Arai, K. Continuous Production of Nickel Fine Particles by Hydrogen Reduction in Near-Critical Water. Industrial & Engineering Chemistry Research. 2004, 43, 9, 2073-2078.
Sun, Y. P., Atorngitjawat, P., Meziani, M. J., Preparation of Silver Nanoparticles via Rapid Expansion of Water in Carbon Dioxide Microemulsion into Reductant Solution. Langmui. 2001, 17, 5707-5710
Tarasov, S., Kolubaev, A., Belyaev, S., Lerner, M., Tepper, F., Study of Friction Reduction by Nanocopper Additives to Motor Oil. Wear. 2002, 252, 63-69
Tian, H. Y., Luo, W. G., Pu, X. H., Qiu, P. S., He, X. Y., Ding, A. L., Synthesis and Characteristics of Strontium–barium Titanate Graded Thin Films at Low Temperature Using a Sol–gel Technique. Solid State Communications. 2001, 17, 315-319
Versluijs, J. J., Bari, M. A., Coey, J. M., Magnetoresistance of Half-Metallic Oxide Nanocontacts. Physical Review Letters. 2001, 87, 026601.1-026601.4
Viswanathan, R., Lilly, G. D., Gale, W. F., Gupta, R. B., Formation of Zinc Oxide-Titanium Dioxide Composite Nanoparticles in Supercritical Water. Industrial & Engineering Chemistry Research. 2003, 42, 5535-5540
Wang, H., Huang, Y., Tan, Z., Hu., Fabrication and Characterization of Copper Nanoparticle Thin-films and The Electrocatalytic Behavior. Analytica Chimica Acta. 2004, 15, 13-17
Wu, X., Jiang, Z., Liu, H., Xin, S., Hu, X., Photo-catalytic Activity of Titanium Dioxide Thin Films Prepared by Micro-plasma Oxidation Method. Thin Solid Films. 2003, 441, 130-134
Wu, K. T., Yao, Y.D., Wang, C. R., Chen, P. F., Yeh, E. T., Magnetic Field Induced Optical Transmission Study in An Iron Nanoparticle Ferrofluid. Journal of Applied Physics. 1999, 85, 5959-5961
Yahya, R. B., Hayashi, H., Nagase, T., Ebina, T., Onodera, Y., Saitoh, N., Hydrothermal Synthesis of Potassium Hexatitanates under Supercritical and Supercritical Water Conditions and Its Application in Photocatalysis. Chemistry of Materials. 2001, 13, 842-847
Yu, J., Savage, P. E., Decomposition of Formic Acid under Hydrothermal Condition. Industrial & Engineering Chemistry Research. 1998, 37, 2-10
Ziegler, K.J., Doty, R.C., Johnston, K.P., Korgel, B.A., Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supercritical Water. Journal of the American Ceramic Society. 2001, 123, 7797-7803
Zhou, M., Chen, S., Ren, H., Wu, L., Zhao, S., Electrochemical Formation of Platinum Nanoparticles by A Novel Rotating Cathode Method. Physica E. 2005, 27, 341–350
Zhou, X. J., Harmer, A. J., Heinig, N. F., Leung, K. T., Parametric Study on Electrochemical Deposition of Copper Nanoparticles on an Ultrathin Polypyrrole Film Deposited on a Gold Film Electrode. Langmuir, 20, 2004, 5109-5113
Zhu, J., Liu, S., Plachiik, O., Koltypin Y., Gedanken, A., Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods. Langmui. 2000, 16, 6396-6399
蘇至善,以批式超臨界反溶劑沉積法進行非類固醇抗發炎藥之再結晶研究,國立台灣大學化學工程學研究所碩士論文,2003
梁明在,水熱條件下形成奈米粉體之機制, 2003年超臨界流體技術應用與發展研討會暨設備展. 1.3.1-1.3.12,台北,台灣,2003
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24208-
dc.description.abstract不同於超臨界水水熱結晶製備奈米金屬氧化物,本研究以超臨界水還原方法製備奈米金屬及金屬氧化物。本研究使用四種前驅物,分別為硫酸鐵,硫酸銅,硫酸銀及四氯化鉑,並以甲酸作為還原劑,合成奈米四氧化三鐵、奈米銅、奈米銀及奈米白金。本研究主要探討欲得到不同奈米金屬及奈米金屬氧化物所需還原劑之濃度,及所得產物之粒徑大小及其分佈。由各產物之TEM圖所測得之粒徑大小,奈米銅平均粒徑約為18奈米,奈米銀約為28奈米,奈米白金約為10奈米。除成功製備奈米金屬,本研究亦提出超臨界水還原反應方程式。zh_TW
dc.description.abstractIn this study, supercritical water reduction (SCWR) method was applied to prepare metal oxide and metal nanoparticles. Different from the supercritical water hydrothermal crystallization, reduction methods was used to obtain the nanoparticles. Four kinds of metal precursors, ferric sulfate, copper sulfate, and silver sulfate, were employed in this study to prepare Fe3O4, Cu, Ag, and Pt nanoparticles. The effect of reducing agent concentration was examined. TEM micrographs showed that average particle size of copper, silver, platinum are about 18nm, 28nm and 10nm, respectively. The reaction mechanism for supercritical water reduction was also proposed in this study.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:18:32Z (GMT). No. of bitstreams: 1
ntu-94-R92524077-1.pdf: 2871012 bytes, checksum: a74a4fac458065aae8a202db46d9d159 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄
摘要
Abstract Ⅰ
Ⅱ
目錄 Ⅲ
表目錄
圖目錄 Ⅴ
Ⅵ
第一章 序論 1
1-1 奈米級金屬氧化物之用途 1
1-2 奈米級金屬氧化物之傳統製程 2
1-3 超臨界流體技術及超臨界水之應用 3
1-3-1 超臨界流體技術 3
1-3-2 超臨界二氧化碳製備奈米粉體 5
1-3-3 超臨界水之應用 6
1-4 利用超臨界水製備奈米金屬氧化物之文獻回顧 7
1-5 本研究之研究動機 11
1-6 本論文之架構 14
第二章 實驗方法、步驟與分析 16
2-1 前言 16
2-2 實驗藥品 16
2-3 實驗儀器 17
2-4 實驗裝置 18
2-4-1 儀器組裝 18
2-4-2 儀器測試 20
2-5 實驗步驟 21
2-6 實驗分析 22
2-6-1 X光繞射分析 22
2-6-2 穿透式電子顯微鏡分析 23
2-6-3 粒徑分佈分析 24
2-6-4 pH量測判斷甲酸分解率 24
第三章 結果與討論 25
3-1 以硫酸鐵前驅物製備奈米四氧化三鐵. 25
3-2 以硫酸銅前驅物製備奈米銅 30
3-3 以硫酸銀前驅物製備奈米銀 35
3-4 以氯化鉑前驅物製備奈米白金 38
3-5 與文獻所生產之奈米金屬比較 40
第四章 結論 42
參考文獻 83

表目錄
Table. 1-1 Summary of metal oxide particles produced by supercritical water
43
Table. 1-2 Summary of metal nanopaticles produced by microemulsion, electrochemical and synthesis with silica or silica film method
44
Table. 3-1-1 Decomposition fraction of formic acid 45
Table. 3-1-2 Relation between Intensity ratio and weight percentage of Fe3O4
45
Table. 3-1-3 Relation between concentration of formic acid and the average particle size measurement from TEM
46






圖目錄
Fig. 1-1 Properties of water from standard state( 25℃, 1bar) to supercritical state
47
Fig. 1-2 Solubility behavior of PbO and CuO in sub- and supercritical water
47
Fig. 1-3 A schematic mechanism of CeO2 formation in sub- and supercritical water
48
Fig. 2-1 Experimental apparatus of continuous SCWR reaction 49
Fig. 3-1-1 JCPDS of (A)α-Fe2O3 and (B) Fe3O4 50
Fig. 3-1-2 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under:
(A) [HCOOH]=0.0015M (B) [HCOOH]=0.015M
51
Fig. 3-1-3 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under:
(C) [HCOOH] =0.15M (D) [HCOOH] =1.5M
52
Fig. 3-1-4 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under:
(E) [HCOOH] =1.8M (F) [HCOOH] =2.4M
53
Fig. 3-1-5 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under:
(G) [HCOOH] =3M (H) [HCOOH] =3.6M
54
Fig. 3-1-6 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under:
(I) [HCOOH] =7.5M
55
Fig. 3-1-7 The relationship between intensity ratio and wt % of Fe3O4
56
Fig. 3-1-8 FTIR spectrum of the exhausting gases CO2 56
Fig. 3-1-9 TEM images of α-Fe2O3 and Fe3O4 mixtures under:
(A) [HCOOH]=0.0015M (B) [HCOOH]=0.015M
57
Fig. 3-1-10 TEM images of α-Fe2O3 and Fe3O4 mixtures under:
(C) [HCOOH]=0.15M (D) [HCOOH]=1.5M
58
Fig. 3-1-11 TEM images of α-Fe2O3 and Fe3O4 mixtures under:
(E) [HCOOH]=1.8M (F) [HCOOH]=2.4M
59
Fig. 3-1-12 TEM images of α-Fe2O3 and Fe3O4 mixtures under:
(G) [HCOOH]=3M (H) [HCOOH]=3.6M
60
Fig. 3-1-13 TEM images of α-Fe2O3 and Fe3O4 mixtures under:
(I)[HCOOH]=7.5 M
61

Fig. 3-1-14
Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under:
(A) [HCOOH]=0.0015M (B) [HCOOH]=0.015M

62
Fig. 3-1-15 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under:
[HCOOH]=0.15M (B) [HCOOH]=1.5M
63
Fig. 3-1-16 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under:
(E) [HCOOH]=1.8M (F) [HCOOH]=2.4M
64
Fig. 3-1-17 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under:
(G) [HCOOH]=3 M (H) [HCOOH]=3.6M
65
Fig. 3-1-18 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under:
(I) [HCOOH]=7.5M
66
Fig. 3-2-1 JCPDS of (A) CuSO4•2Cu(OH)2
(B) CuSO4•3Cu(OH)2
67
Fig. 3-2-2 JCPDS of (C) Cu (D) Cu2O 68
Fig. 3-2-3 JCPDS of (E) CuO 69
Fig. 3-2-4 XRD spectrum of (A) Cu3(SO4)(OH)4 and
Cu4(SO4)(OH)6xH2O (B) Cu, CuO and Cu2Omixtures
under: (A) [HCOOH] =0M (B) [HCOOH]=0.003M
70
Fig. 3-2-5 XRD spectrum of Cu, CuO and Cu2O mixtures under:
(C) [HCOOH] =0.15M (D) [HCOOH] =1.8M
71
Fig. 3-2-6 XRD spectrum of Cu under: (E) [HCOOH] =3.6M 72
Fig. 3-2-7 TEM images of Cu under 3.6M formic acid 73
Fig. 3-2-8 Particle size distribution diagram of Cu under 3.6M formic acid
74
Fig. 3-3-1 JCPDS of (A) Ag2SO4 (B) Ag 75
Fig. 3-3-2 XRD spectrum of (A) Ag2SO4 and (B) Ag under:
(A) [HCOOH] =0M (B) [HCOOH] =0.015M
76
Fig. 3-3-3 TEM images of Ag under 0.015M formic acid 77
Fig. 3-3-4 Particle size distribution diagram of Ag under 0.015M formic acid
78
Fig. 3-4-1 JCPDS of (A) α-Fe2O3 (B) Pt 79
Fig. 3-4-2 XRD spectrum of (A) α-Fe2O3 (B) Pt under:
(A)[HCOOH] =0M (B) [HCOOH] =0.015M
80
Fig. 3-4-3
TEM images of Pt under 0.015M formic acid
81
Fig. 3-4-4 Particle size distribution diagram of Pt under 0.015M formic acid
82
dc.language.isozh-TW
dc.subject奈米銀zh_TW
dc.subject奈米銅zh_TW
dc.subject超臨界水zh_TW
dc.subject水熱結晶zh_TW
dc.subject米四氧化三鐵zh_TW
dc.subject奈米白金zh_TW
dc.subjectnanoparticlesen
dc.subjectsupercritical water reductionen
dc.subjecthydrothermal crystallizationen
dc.subjectFe3O4en
dc.subjectCuen
dc.subjectAgen
dc.subjectPten
dc.title利用超臨界水還原方法製備奈米金屬及奈米金屬氧化物粉體之研究zh_TW
dc.titleSynthesis of Metal and Metal Oxide Nanoparticles by Supercritical Water Reduction Methoden
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳立仁,萬本儒
dc.subject.keyword超臨界水,水熱結晶,米四氧化三鐵,奈米銅,奈米銀,奈米白金,zh_TW
dc.subject.keywordsupercritical water reduction,hydrothermal crystallization,Fe3O4,Cu,Ag,Pt,nanoparticles,en
dc.relation.page91
dc.rights.note未授權
dc.date.accepted2005-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved