請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24208完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳延平 | |
| dc.contributor.author | Hsin-Yan Lu | en |
| dc.contributor.author | 呂信諺 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:18:32Z | - |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-30 | |
| dc.identifier.citation | 參考文獻
Adschiri, T., Kanazawa, K., Arai, K., Rapid and Continuous Hydrothermal Crystallization of Metal Oxide Particles in Supercritical Water. Journal of the American Ceramic Society. 1992(a), 75, 1019-1023 Adschiri, T., Kanazawa, K., Arai, K., Rapid and Continuous Hydrothermal Synthesis of Boehmite Particles in Subcritical and Supercritical Water. Journal of the American Ceramic Society. 1992(b), 75, 2615-2620 Adschiri, T., Hakuta, Y., Arai, K., Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions. Industrial & Engineering Chemistry Research. 2000, 39, 4901-4907 Anno, Y., Maekawa, T., Tamaki, J., Asano, Y., Hayashi, K., Miura, N., Yamazoe, N., Zinc-oxide-based Semiconductor Sensors for Detecting Acetone and Capronaldehyde in the Vapour of Consommé Soup. Sensors and Actuators B. 1995, 24-25, 623-627 Antal, M. J., Jr., Allen, S. G., Schulman, D., Xu, X., Divilio, R J., Biomass Gasification in Supercritical Water. Industrial & Engineering Chemistry Research. 2000, 39, 4040-4053 Arai, K., Phase Behavior of Hydrothermal Environments for Producing Inorganic Fine Particles and Nanocrystals. Proc. 8th Meeting on Spercritical Fluids, Bordeaux, France, 2002, 23-30 Arai, Y., Sako, T., Takebayashi, Y. (Eds.), Supercritical Fluid Molecular Interactions, Physical Properties and New Applications . 2000, Berlin, Springer. Aymonier, C., Schlotterbeck, U., Antonietti, L., Zacharias, P., Thomann, R., Tiller, J. C., Mecking, S., Hybrids of Silver Nanoparticles with Amphiphilic Hyperbranched Macromolecules Exhibiting Antimicrobial Properties. Chemical Communications. 2002, 3018–3019 Bulte, J. W. M., Cuyper, M. D., Despres, D., Frank, J. A., Preparation, Relaxometry, and Biokinetics of PEGylated Magnetoliposomes as MR Contrast Agent. Journal of Magnetism and Magnetic Materials. 1999, 194, 204–209 Cabanas, A., Poliakoff, M., The Continuous Hydrothermal Synthesis of Nano-particulate Ferrites in Near Critical and Supercritical Water. Journal of Materials Chemistry. 2001, 11, 1408-1416 Condorelli, G, G., Costanzo, L, L., Fragala, I, L., Giuffrida, S., Ventimiglia, G., A Single Photochemical Route for the Formation of Both Copper Nanoparticles and Patterned Nanostructured Films. Journal of Materials Chemistry. 2003, 13, 2409–2411 Cote, L. J., Teja, S., Angus, P., Zhang, Z. J., Comtinuous Hydrothermal Synthesis and Crystallization of Magnetic Oxide Nanoparticles. Journal of Maters Chemistry. 2002, 17, 2410-2416 Cote, L. J., Teja, S., Angus, P., Zhang, Z. J., Comtinuous Hydrothermal Synthesis of CoFe2O4 Nanoparticles. Fluid Phase Equilibria. 2003, 210, 307-317 Ding, Y., Zhang, G., Wu, H., Hai, B., Wang, L., Qian, Y., “Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis.” Chem. Mater. 2001, 13, 435-440 Feng, J., Aki, S. N. V. K., Chateauneuf, J. E., Brennecke, J. F., Abstraction of Hydrogen from Methanol by Hydroxyl Radical in Subcritical and Supercritical Water. Journal of Maters Chemistry. 2003, 107, 11043-11048 Fukuoka, A., Araki, H., Kimura, J., Sakamoto, Y., Higuchi, T., Sugimoto, N., Inagaki, S., Ichikawa, M., Template Synthesis of Nanoparticle Arrays of Gold, Platinum and Palladium in Mesoporous Silica Films and Powders. Journal of Materials Chemistry. 2004, 14, 752-756 Guo, W., Datye, A. K., Ward, T. L., Synthesis of Barium Titanate Powders by Aerosol Pyrolysis of a Pechini-type Precursor Solution. Journal of Maters Chemistry. 2005, 15, 470-477 Gusev, E. P., Copel, M., Cartier, E., High-resolution Depth Profiling in Ultrathin Al2O3 Films on Si. Applied Physics Letters. 2000, 76, 176-178 Hakuta, Y., Adschiri, T., Suzuki, T., Chida, T., Seino, K., Arai K., Flow Method for Rapidly Producing Barium Hexaferrite Particles in Sipercritical Water. Journal of the American Ceramic Society. 1998(a), 81, 2461-2464 Hakuta, Y., Onai, S., Terayama, H., Adschiri, T., Arai, K., Production of Ultra-fine Particles by Hydrothermal Synthesis Under Supercritical Condition. Journal of Materials Science Letters. 1998(b), 17, 1211-1213 Hakuta, Y., Seino, K., Ura, H., Adschiri, T., Takizawa, H., Arai, K., Production of Phosphor (TAG/Tb) Fine Particles by Hydrothermal Synthesis in Supercritical Water. Journal of Maters Chemistry. 1999, 9, 2671-2675 Hakuta, Y., Ura, H., Hayashi, H., Arai, K., Effect of Water Density on Polymorph of BaTiO3 Nanoparticles Synthesized under Sub and Supercritical Water Conditions. Materials Letters. 2005, 59, 1387-1390 Han, B. H., Antonietti, M., One-step Synthesis of Copper Nanoparticles Containing Mesoporous Silica by Nanocasting of Binuclear Copper(II) Complexes with Cyclodextrins. Journal of Materials Chemistry. 13, 2003, 1793-1796 Herricks, T., Chen, J., Xia, Y., Polyol Synthesis of Platinum Nanoparticles: Control of Morphology with Sodium Nitrate. Nano Letters. 2004, 12, 2367-2371 Ingelsten, H. H., Be´ziat, J. C., Bergkvist, K., Palmqvist, A., Skoglundh, M., Qiuhong H., Falk, L. K. l., Holmberg, K., Deposition of Platinum Nanoparticles, Synthesized in Water-in-Oil Microemulsions, on Alumina Supports. Langmuir, 2002, 18, 1811-1818 Joo, J., Yu, T., Kim, Y. W., Park, H. M., Wu, F., Zhang, J. Z., Hyeon, T., Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. Journal of American Chemical Society. 2003, 125, 6553-6557 Josephson, L., Tsung, C. H., High-efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic Tat Peptide Conjugates. Bioconjugate Chemistry. 1999, 10, 186 Jung, J., Perrut, M., Particle Design Using Supercritical Fluids: Literature and Patent Survey. The Journal of Supercritical Fluids. 2001, 20, 179-219 Kanamura, K., Goto, A., Ho, R. Y., Umegaki, T., Toyoshima, K., Okada, K., Hukuta, Y., Adschiri, T., Arai, K., Preparation and Electrochemical Characterization of LiCoO2 Particles Prepared by Supercritical Water Synthesis. Electrochemical and Solid-State Letters. 2000, 6, 256-258 Kaneko, D., Shouji, H., Kawai, T., Kon-No, K., Synthesis of ZnO Particles by Ammonia-Catalyzed Hydrolysis of Zinc Dibutoxide in Nonionic Reversed Micelles. Langmuir. 2000, 16, 4086-4089 Kang, K., Sato, N., Fujie, K., Development of Marine Waste Recycling Technologies Using Sub- and Supercritical Water. Journal of Chemical Engineering of Japan. 2001, 34, 1091-1096 Korgel, B. A., Shah, P. S., Pell, L. E., Johnston, K. P., Nanocrystal Stabilization and Synthesis in Supercritical Solvents Proceeding. 4th International Symposium on High Pressure Technology and Chemical Engineering, Venice, Italy, September, 2002, 22-25 Kurbitz, S., Porstendorfer, J., Berg, K. J., Berg, g., Determination of Size and Concentration of Copper Nanoparticles Dispersed in Glasses Using Spectroscopic Ellipsometry. Applied Physics B – Lasers and Optics. 2001, 73, 333–337 Matsumura, M., Nunoura, T., Urase, T., Yamamoto, K., Supercritical Water Oxidation of High Concentrations of Phenol. Journal of Hazardous Materials. 2000, 28, 245-254 Mitrikas, G., Trapalis, C. C., Kordas, G., Tailoring the Particle Size of Sol-gel Derived Silver Nanoparticles in SiO2. Journal of Non-Crystalline Solids. 2001, 286, 41-50 Nayral, C. , Ould-Ely, T., Maisonnat, A., Chaudret, B., Fau, P., Lescouzères, L., Peyre-Lavigne, A., A Novel Mechanism for the Synthesis of Tin / Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors. Advanced Materials. 1999, 11, 61-63 Ohde, H., Ohde, M., Bailey, F., Kim, H., Wai, C.M., Water-in-CO2 Microemulsions as Nanoreactors for Synthesizing CdS and ZnS Nanoparticles in Supercritical CO2. Nanoletters. 2002, 2, 721-724 Pitkanen, I., Huttunen, J., Vesterinen, R., Evolved Gas of Some Solid Fuels by TG-FTIR. Journal of Thermal Analysis and Calorimetry. 1999, 56, 1253-1259 Qi, L., Ma, J., Shen, J., Synthesis of Copper Nanoparticles in Nonionic Water-in-Oil Microemulsions. Journal of Colloid and Interface Science. 1997, 186, 498-450 Rodríguez-Paéz, J.E., Caballero, A.C., Villegas, M., Moure C., Durán, P., Fernández, J.F., Controlled Precipitation Methods: Formation Mechanism of ZnO Nanoparticles. Journal of the European Ceramic Society. 2001, 21, 925-930 Reverchon, E., Supercritical Antisolvent Precipitation of Micro- and Nano-particles. The Journal of Supercritical Fluids. 1999, 15, 1-21 Schmieder, H., Abeln, J., Supercritical Water Oxidation: State of the Art. Chemical Engineering and Technology. 1999, 22, 903-908 Shigeyuki, S., R, Rustum., Hydrothermal Synthesis of Fine Oxide Powders. Bulletin of Materials Science. 2000, 23, 453-460 Spanhel, L., Anderson, M.A., Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated ZnO Colloids. Journal of the American Ceramic Society. 1991, 113, 2826-2833 Sue K, M. Aida.,Y. Hakuta.,R. L. Smith., Jr., T. Adschiri K. Arai., Measurment And Correlation of Metal Oxide Solubility In Sub- And Supercritical Water. Proceedings of the 13th International Conference on the Properties of Water and Steam, NRC Research Press, Ottaea, 2000, 782-787 Sue, K. Kakinuma, N. Adschiri, T. Arai, K. Continuous Production of Nickel Fine Particles by Hydrogen Reduction in Near-Critical Water. Industrial & Engineering Chemistry Research. 2004, 43, 9, 2073-2078. Sun, Y. P., Atorngitjawat, P., Meziani, M. J., Preparation of Silver Nanoparticles via Rapid Expansion of Water in Carbon Dioxide Microemulsion into Reductant Solution. Langmui. 2001, 17, 5707-5710 Tarasov, S., Kolubaev, A., Belyaev, S., Lerner, M., Tepper, F., Study of Friction Reduction by Nanocopper Additives to Motor Oil. Wear. 2002, 252, 63-69 Tian, H. Y., Luo, W. G., Pu, X. H., Qiu, P. S., He, X. Y., Ding, A. L., Synthesis and Characteristics of Strontium–barium Titanate Graded Thin Films at Low Temperature Using a Sol–gel Technique. Solid State Communications. 2001, 17, 315-319 Versluijs, J. J., Bari, M. A., Coey, J. M., Magnetoresistance of Half-Metallic Oxide Nanocontacts. Physical Review Letters. 2001, 87, 026601.1-026601.4 Viswanathan, R., Lilly, G. D., Gale, W. F., Gupta, R. B., Formation of Zinc Oxide-Titanium Dioxide Composite Nanoparticles in Supercritical Water. Industrial & Engineering Chemistry Research. 2003, 42, 5535-5540 Wang, H., Huang, Y., Tan, Z., Hu., Fabrication and Characterization of Copper Nanoparticle Thin-films and The Electrocatalytic Behavior. Analytica Chimica Acta. 2004, 15, 13-17 Wu, X., Jiang, Z., Liu, H., Xin, S., Hu, X., Photo-catalytic Activity of Titanium Dioxide Thin Films Prepared by Micro-plasma Oxidation Method. Thin Solid Films. 2003, 441, 130-134 Wu, K. T., Yao, Y.D., Wang, C. R., Chen, P. F., Yeh, E. T., Magnetic Field Induced Optical Transmission Study in An Iron Nanoparticle Ferrofluid. Journal of Applied Physics. 1999, 85, 5959-5961 Yahya, R. B., Hayashi, H., Nagase, T., Ebina, T., Onodera, Y., Saitoh, N., Hydrothermal Synthesis of Potassium Hexatitanates under Supercritical and Supercritical Water Conditions and Its Application in Photocatalysis. Chemistry of Materials. 2001, 13, 842-847 Yu, J., Savage, P. E., Decomposition of Formic Acid under Hydrothermal Condition. Industrial & Engineering Chemistry Research. 1998, 37, 2-10 Ziegler, K.J., Doty, R.C., Johnston, K.P., Korgel, B.A., Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supercritical Water. Journal of the American Ceramic Society. 2001, 123, 7797-7803 Zhou, M., Chen, S., Ren, H., Wu, L., Zhao, S., Electrochemical Formation of Platinum Nanoparticles by A Novel Rotating Cathode Method. Physica E. 2005, 27, 341–350 Zhou, X. J., Harmer, A. J., Heinig, N. F., Leung, K. T., Parametric Study on Electrochemical Deposition of Copper Nanoparticles on an Ultrathin Polypyrrole Film Deposited on a Gold Film Electrode. Langmuir, 20, 2004, 5109-5113 Zhu, J., Liu, S., Plachiik, O., Koltypin Y., Gedanken, A., Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods. Langmui. 2000, 16, 6396-6399 蘇至善,以批式超臨界反溶劑沉積法進行非類固醇抗發炎藥之再結晶研究,國立台灣大學化學工程學研究所碩士論文,2003 梁明在,水熱條件下形成奈米粉體之機制, 2003年超臨界流體技術應用與發展研討會暨設備展. 1.3.1-1.3.12,台北,台灣,2003 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24208 | - |
| dc.description.abstract | 不同於超臨界水水熱結晶製備奈米金屬氧化物,本研究以超臨界水還原方法製備奈米金屬及金屬氧化物。本研究使用四種前驅物,分別為硫酸鐵,硫酸銅,硫酸銀及四氯化鉑,並以甲酸作為還原劑,合成奈米四氧化三鐵、奈米銅、奈米銀及奈米白金。本研究主要探討欲得到不同奈米金屬及奈米金屬氧化物所需還原劑之濃度,及所得產物之粒徑大小及其分佈。由各產物之TEM圖所測得之粒徑大小,奈米銅平均粒徑約為18奈米,奈米銀約為28奈米,奈米白金約為10奈米。除成功製備奈米金屬,本研究亦提出超臨界水還原反應方程式。 | zh_TW |
| dc.description.abstract | In this study, supercritical water reduction (SCWR) method was applied to prepare metal oxide and metal nanoparticles. Different from the supercritical water hydrothermal crystallization, reduction methods was used to obtain the nanoparticles. Four kinds of metal precursors, ferric sulfate, copper sulfate, and silver sulfate, were employed in this study to prepare Fe3O4, Cu, Ag, and Pt nanoparticles. The effect of reducing agent concentration was examined. TEM micrographs showed that average particle size of copper, silver, platinum are about 18nm, 28nm and 10nm, respectively. The reaction mechanism for supercritical water reduction was also proposed in this study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:18:32Z (GMT). No. of bitstreams: 1 ntu-94-R92524077-1.pdf: 2871012 bytes, checksum: a74a4fac458065aae8a202db46d9d159 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄
摘要 Abstract Ⅰ Ⅱ 目錄 Ⅲ 表目錄 圖目錄 Ⅴ Ⅵ 第一章 序論 1 1-1 奈米級金屬氧化物之用途 1 1-2 奈米級金屬氧化物之傳統製程 2 1-3 超臨界流體技術及超臨界水之應用 3 1-3-1 超臨界流體技術 3 1-3-2 超臨界二氧化碳製備奈米粉體 5 1-3-3 超臨界水之應用 6 1-4 利用超臨界水製備奈米金屬氧化物之文獻回顧 7 1-5 本研究之研究動機 11 1-6 本論文之架構 14 第二章 實驗方法、步驟與分析 16 2-1 前言 16 2-2 實驗藥品 16 2-3 實驗儀器 17 2-4 實驗裝置 18 2-4-1 儀器組裝 18 2-4-2 儀器測試 20 2-5 實驗步驟 21 2-6 實驗分析 22 2-6-1 X光繞射分析 22 2-6-2 穿透式電子顯微鏡分析 23 2-6-3 粒徑分佈分析 24 2-6-4 pH量測判斷甲酸分解率 24 第三章 結果與討論 25 3-1 以硫酸鐵前驅物製備奈米四氧化三鐵. 25 3-2 以硫酸銅前驅物製備奈米銅 30 3-3 以硫酸銀前驅物製備奈米銀 35 3-4 以氯化鉑前驅物製備奈米白金 38 3-5 與文獻所生產之奈米金屬比較 40 第四章 結論 42 參考文獻 83 表目錄 Table. 1-1 Summary of metal oxide particles produced by supercritical water 43 Table. 1-2 Summary of metal nanopaticles produced by microemulsion, electrochemical and synthesis with silica or silica film method 44 Table. 3-1-1 Decomposition fraction of formic acid 45 Table. 3-1-2 Relation between Intensity ratio and weight percentage of Fe3O4 45 Table. 3-1-3 Relation between concentration of formic acid and the average particle size measurement from TEM 46 圖目錄 Fig. 1-1 Properties of water from standard state( 25℃, 1bar) to supercritical state 47 Fig. 1-2 Solubility behavior of PbO and CuO in sub- and supercritical water 47 Fig. 1-3 A schematic mechanism of CeO2 formation in sub- and supercritical water 48 Fig. 2-1 Experimental apparatus of continuous SCWR reaction 49 Fig. 3-1-1 JCPDS of (A)α-Fe2O3 and (B) Fe3O4 50 Fig. 3-1-2 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under: (A) [HCOOH]=0.0015M (B) [HCOOH]=0.015M 51 Fig. 3-1-3 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under: (C) [HCOOH] =0.15M (D) [HCOOH] =1.5M 52 Fig. 3-1-4 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under: (E) [HCOOH] =1.8M (F) [HCOOH] =2.4M 53 Fig. 3-1-5 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under: (G) [HCOOH] =3M (H) [HCOOH] =3.6M 54 Fig. 3-1-6 XRD spectrum of α-Fe2O3 and Fe3O4 mixtures under: (I) [HCOOH] =7.5M 55 Fig. 3-1-7 The relationship between intensity ratio and wt % of Fe3O4 56 Fig. 3-1-8 FTIR spectrum of the exhausting gases CO2 56 Fig. 3-1-9 TEM images of α-Fe2O3 and Fe3O4 mixtures under: (A) [HCOOH]=0.0015M (B) [HCOOH]=0.015M 57 Fig. 3-1-10 TEM images of α-Fe2O3 and Fe3O4 mixtures under: (C) [HCOOH]=0.15M (D) [HCOOH]=1.5M 58 Fig. 3-1-11 TEM images of α-Fe2O3 and Fe3O4 mixtures under: (E) [HCOOH]=1.8M (F) [HCOOH]=2.4M 59 Fig. 3-1-12 TEM images of α-Fe2O3 and Fe3O4 mixtures under: (G) [HCOOH]=3M (H) [HCOOH]=3.6M 60 Fig. 3-1-13 TEM images of α-Fe2O3 and Fe3O4 mixtures under: (I)[HCOOH]=7.5 M 61 Fig. 3-1-14 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under: (A) [HCOOH]=0.0015M (B) [HCOOH]=0.015M 62 Fig. 3-1-15 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under: [HCOOH]=0.15M (B) [HCOOH]=1.5M 63 Fig. 3-1-16 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under: (E) [HCOOH]=1.8M (F) [HCOOH]=2.4M 64 Fig. 3-1-17 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under: (G) [HCOOH]=3 M (H) [HCOOH]=3.6M 65 Fig. 3-1-18 Particle size distribution diagram of α-Fe2O3and Fe3O4 mixtures under: (I) [HCOOH]=7.5M 66 Fig. 3-2-1 JCPDS of (A) CuSO4•2Cu(OH)2 (B) CuSO4•3Cu(OH)2 67 Fig. 3-2-2 JCPDS of (C) Cu (D) Cu2O 68 Fig. 3-2-3 JCPDS of (E) CuO 69 Fig. 3-2-4 XRD spectrum of (A) Cu3(SO4)(OH)4 and Cu4(SO4)(OH)6xH2O (B) Cu, CuO and Cu2Omixtures under: (A) [HCOOH] =0M (B) [HCOOH]=0.003M 70 Fig. 3-2-5 XRD spectrum of Cu, CuO and Cu2O mixtures under: (C) [HCOOH] =0.15M (D) [HCOOH] =1.8M 71 Fig. 3-2-6 XRD spectrum of Cu under: (E) [HCOOH] =3.6M 72 Fig. 3-2-7 TEM images of Cu under 3.6M formic acid 73 Fig. 3-2-8 Particle size distribution diagram of Cu under 3.6M formic acid 74 Fig. 3-3-1 JCPDS of (A) Ag2SO4 (B) Ag 75 Fig. 3-3-2 XRD spectrum of (A) Ag2SO4 and (B) Ag under: (A) [HCOOH] =0M (B) [HCOOH] =0.015M 76 Fig. 3-3-3 TEM images of Ag under 0.015M formic acid 77 Fig. 3-3-4 Particle size distribution diagram of Ag under 0.015M formic acid 78 Fig. 3-4-1 JCPDS of (A) α-Fe2O3 (B) Pt 79 Fig. 3-4-2 XRD spectrum of (A) α-Fe2O3 (B) Pt under: (A)[HCOOH] =0M (B) [HCOOH] =0.015M 80 Fig. 3-4-3 TEM images of Pt under 0.015M formic acid 81 Fig. 3-4-4 Particle size distribution diagram of Pt under 0.015M formic acid 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米銀 | zh_TW |
| dc.subject | 奈米銅 | zh_TW |
| dc.subject | 超臨界水 | zh_TW |
| dc.subject | 水熱結晶 | zh_TW |
| dc.subject | 米四氧化三鐵 | zh_TW |
| dc.subject | 奈米白金 | zh_TW |
| dc.subject | nanoparticles | en |
| dc.subject | supercritical water reduction | en |
| dc.subject | hydrothermal crystallization | en |
| dc.subject | Fe3O4 | en |
| dc.subject | Cu | en |
| dc.subject | Ag | en |
| dc.subject | Pt | en |
| dc.title | 利用超臨界水還原方法製備奈米金屬及奈米金屬氧化物粉體之研究 | zh_TW |
| dc.title | Synthesis of Metal and Metal Oxide Nanoparticles by Supercritical Water Reduction Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳立仁,萬本儒 | |
| dc.subject.keyword | 超臨界水,水熱結晶,米四氧化三鐵,奈米銅,奈米銀,奈米白金, | zh_TW |
| dc.subject.keyword | supercritical water reduction,hydrothermal crystallization,Fe3O4,Cu,Ag,Pt,nanoparticles, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
