請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2418
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 于天立 | |
dc.contributor.author | Chun-Jen Peng | en |
dc.contributor.author | 彭俊人 | zh_TW |
dc.date.accessioned | 2021-05-13T06:39:59Z | - |
dc.date.available | 2017-08-01 | |
dc.date.available | 2021-05-13T06:39:59Z | - |
dc.date.copyright | 2017-08-01 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-31 | |
dc.identifier.citation | [1] A. Auger. Benchmarking the (1+1) evolution strategy with one-fifth success rule on the bbob-2009 function testbed. In Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pages 2447–2452. ACM, 2009.
[2] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population size. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 2, pages 1769–1776. IEEE, 2005. [3] M. Clerc. Back to random topology. Retrieved from http://clerc. maurice. free. fr/pso, 2007. [4] M. Clerc. Standard particle swarm optimisation. Retrieved from https://hal.archives-ouvertes.fr/hal-00764996/, 2012. [5] M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-heuristic. In Evolutionary Computation, 1999. The 1999 IEEE Congress on, volume 2, pages 1470–1477. IEEE, 1999. [6] N. Hansen. The CMA evolution strategy: a comparing review. Towards a new evolutionary computation, pages 75–102, 2006. [7] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation, 11(1):1–18, 2003. [8] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary computation, 9(2):159–195, 2001. [9] J. A. Hartigan and P. Hartigan. The dip test of unimodality. The Annals of Statistics, pages 70–84, 1985. [10] L. P. Kaelbling. Learning in embedded systems. MIT press, 1993. [11] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, pages 1942–1948. IEEE, 1995. [12] I. O. Kyrgyzov, O. O. Kyrgyzov, H. Maître, and M. Campedel. Kernel MDL to determine the number of clusters. In International Workshop on Machine Learning and Data Mining in Pattern Recognition, pages 203–217. Springer, 2007. [13] R. Luce. Individual Choice Behavior a Theoretical Analysis. John Wiley and sons, 1959. [14] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978. [15] J. Rissanen. Universal coding, information, prediction, and estimation. IEEE Transactions on Information theory, 30(4):629–636, 1984. [16] H. Robbins. Some aspects of the sequential design of experiments. In Herbert Robbins Selected Papers, pages 169–177. 1985. [17] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987. [18] K. Socha and M. Dorigo. Ant colony optimization for continuous domains. European journal of operational research, 185(3):1155–1173, 2008. [19] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-p. Chen, A. Auger, and S. Tiwari. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report, 2005005:2005, 2005. [20] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),63(2):411–423, 2001. [21] J. Vermorel and M. Mohri. Multi-armed bandit algorithms and empirical evaluation. In ECML, volume 3720, pages 437–448. Springer, 2005. [22] C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College, Cambridge, 1989. [23] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas. Standard particle swarm optimisation 2011 at CEC-2013: A baseline for future PSO improvements. In Evolutionary Computation, 2013. The 2013 IEEE Congress on, pages 2337–2344. IEEE, 2013. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2418 | - |
dc.description.abstract | 本論文提出了一新的實數多模態(multimodal)最佳化方法。大多數的現實問題都可以由多個單峰問題合成。而對於實數最佳化,我們較感興趣的是多模態且可被拆解成多個階層化的單峰問題。然而,一旦面對多模態問題,我們就必須面對利用性(exploitation)與探索性(exploration)的問題。本論文提出一解決多模態問題的技巧。此技巧結合了階層式聚合(hierarchically clustering)與最小描述長度(minimum description length), 來辨識搜尋空間中可能的單峰模型。接著,我們使用一加一演化策略((1+1)-Evolutionary Strategy)來最佳化一齊次座標(homogeneous coordinate)上的線性轉換矩陣,並利用此矩陣將原搜尋空間投影到另一有良好邊界定義的子空間。此投影嘗試定義出只包含一單峰之感興趣區域(region of interest)。最後,我們提出一新的多臂吃角子老虎(multi-armed bandit)技術,來分配給各個子空間的資源,以最大化獲得全域最佳解的機率,我們將此結果與自適應共變異數矩陣演化策略(Covariance Matrix Adaptation Evolution Strategies)、標準粒子群演算法(Standard Particle Swarm Optimization 2011)、與實數域蟻群演算法(Ant Colony Optimization for Continuous Domain)結合,並利用CEC 2005實數最佳化測試問題來比較結果。 | zh_TW |
dc.description.abstract | This thesis presents a new technique for real-valued multimodal optimization.Most of the real-world problems can be described as a composition of unimodal subproblems. For real-valued optimization, we are interested in problems that are composed of multiple hierarchically decomposable unimodals. However, allocating resources to exploit different unimodals leads to the common dilemma between exploration and exploitation. This thesis propose some new techniques that aim to solve multimodal problems more efficiently. A new technique combining hierarchical clustering and minimum description length is proposed to help identify potential unimodals in the search space. Then, a linear transform matrix in homogeneous coordinate, optimized by the (1+1)-Evolutionary Strategy, projects the search space to a subspace with well-defined boundary. This projection aims to define a region of interest that isolates a unimodal subproblem. Finally, a new multi-armed bandit technique, aiming to maximize the probability of acquiring the global optimum, is proposed to allocate resources for each unimodal. We combined our new techniques with Covariance Matrix Adaptation Evolution Strategy, Standard Particle Swarm Optimization 2011, and Ant Colony Optimization for Continuous Domain.
The results are evaluated with the special session on real-parameter optimization benchmark problems of CEC 2005. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:39:59Z (GMT). No. of bitstreams: 1 ntu-106-R04921039-1.pdf: 8351374 bytes, checksum: b7fd9e2272df490f2a2f442b96fe6cde (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vii 1 Introduction 1 1.1 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Real-valued Optimization Algorithms 5 2.1 Covariance Matrix Adaptation Evolution Strategy . . . . . . . . . . . . . 5 2.1.1 (1+1)-ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 CMA-ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Standard Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . 9 2.2.1 Initialization of the swarm . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Velocity update equations . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 The adaptive random topology . . . . . . . . . . . . . . . . . . . 13 2.3 Ant Colony Optimization for Continuous Domain . . . . . . . . . . . . . 15 2.3.1 Discrete solution construction and pheromone update . . . . . . . 15 2.3.2 Continuous solution construction and phermone update . . . . . . 16 3 Clustering Techniques 19 3.1 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Heirarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Minimum Description Length . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.1 Data description accuracy . . . . . . . . . . . . . . . . . . . . . 24 3.3.2 Model description efficiency . . . . . . . . . . . . . . . . . . . . 26 3.3.3 Model selection with MDL . . . . . . . . . . . . . . . . . . . . . 27 4 Linear Projection 29 4.1 Affine Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Projective Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Optimization for Projection Matrix . . . . . . . . . . . . . . . . . . . . . 35 4.3.1 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.2 Optimization algorithms . . . . . . . . . . . . . . . . . . . . . . 38 5 Multi-armed Bandit Algorithms 39 5.1 The Multi-armed Bandit Problem . . . . . . . . . . . . . . . . . . . . . . 40 5.2 Bandit Algorithms Overview . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3 The New Bandit Technique . . . . . . . . . . . . . . . . . . . . . . . . . 42 6 The New Multimodal Optimization Technique 45 6.1 Framework of the New Multimodal Optimization Technique . . . . . . . 45 6.2 Initialization and Unimodal Identification . . . . . . . . . . . . . . . . . 47 6.3 Define Region of Interest and Construct Arms . . . . . . . . . . . . . . . 47 6.4 Remain Evaluations Allocation and Recluster . . . . . . . . . . . . . . . 48 7 Experiments 51 7.1 CEC 2005 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . 51 7.2 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8 Conclusion 73 Bibliography 75 | |
dc.language.iso | en | |
dc.title | 基於子空間映射與多臂吃角子老虎機技術之實數最佳化 | zh_TW |
dc.title | Real-valued Optimization by Subspace Projection and Multi-armed Bandit Techniques | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 雷欽隆,張時中 | |
dc.subject.keyword | 實數最佳化,多模態最佳化,線性投影,感興趣區域,多臂吃角子老虎技術, | zh_TW |
dc.subject.keyword | Real-valued Optimization,Multimodal Optimization,Linear Projection,Region of Interest,Multi-armed Bandit Algorithm, | en |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU201702268 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-07-31 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 8.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。