請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2415
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱美妃(Mei-Fei Chu) | |
dc.contributor.author | Yueh-Feng Hsieh | en |
dc.contributor.author | 謝岳峰 | zh_TW |
dc.date.accessioned | 2021-05-13T06:39:57Z | - |
dc.date.available | 2020-08-25 | |
dc.date.available | 2021-05-13T06:39:57Z | - |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-01 | |
dc.identifier.citation | Agostini, S., Ryan, J. G., Tonarini, S., & Innocenti, F. (2008). Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth and Planetary Science Letters, 272(1), 139-147.
Aizawa, Y., Tatsumi, Y., & Yamada, H. (1999). Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism. Island Arc, 8(1), 38-46. Arcay, D., Tric, E., & Doin, M.-P. (2005). Numerical simulations of subduction zones: effect of slab dehydration on the mantle wedge dynamics. Physics of the Earth and Planetary Interiors, 149(1), 133-153. Berger, G., Schott, J., & Guy, C. (1988). Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: experimental investigations and modelization between 50 and 300 ℃. Chemical Geology, 71(4), 297-312. Bowin, C., & Reynolds, P. H. (1975). Radiometric ages from Ryukyu arc region and an 40Ar/39Ar age from biotite dacite on Okinawa. Earth and Planetary Science Letters, 27(3), 363-370. Cabato, J., Altherr, R., Ludwig, T., & Meyer, H.-P. (2013). Li, Be, B concentrations and 7Li values in plagioclase phenocrysts of dacites from Nea Kameni (Santorini, Greece). Contributions to Mineralogy and Petrology, 165(6), 1135. Cameron, B., & Walker, J. (2006). Diverse volcanism in southeastern Guatemala: The role of crustal contamination. Geological Society of America Special Papers, 412, 121-139. Chan, L. H., Edmond, J., Thompson, G., & Gillis, K. (1992). Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth and Planetary Science Letters, 108(1-3), 151-160. Chan, L. H., Gieskes, J. M., You, C. H., & Edmond, J. M. (1994). Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochimica et Cosmochimica Acta, 58(20), 4443-4454. Chan, L. H., Leeman, W., & You, C.-F. (1999). Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids. Chemical Geology, 160(4), 255-280. Chan, L. H., Alt, J. C., & Teagle, D. A. (2002). Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater–basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1), 187-201. Chan, L. H., Leeman, W. P., & Plank, T. (2006). Lithium isotopic composition of marine sediments. Geochemistry, Geophysics, Geosystems, 7(6). Davies, J. H., & Stevenson, D. J. (1992). Physical model of source region of subduction zone volcanics. Journal of Geophysical Research: Solid Earth, 97(B2), 2037-2070. Dutrow, B. L., Holdaway, M., & Hinton, R. (1986). Lithium in staurolite and its petrologic significance. Contributions to Mineralogy and Petrology, 94(4), 496-506. Elliott, T., Thomas, A., Jeffcoate, A., & Niu, Y. (2006). Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature, 443(7111), 565-568. Flower, M., Tamaki, K., & Hoang, N. (1998). Mantle Extrusion: A Model for Dispersed Volcanism and Dupal‐Like Asthenosphere in East Asia and the Western Pacific. Mantle dynamics and plate interactions in East Asia, 67-88. Grew, E. S. (1996). Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. Reviews in Mineralogy and Geochemistry, 33(1), 387-502. Halama, R., McDonough, W. F., Rudnick, R. L., & Bell, K. (2008). Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth and Planetary Science Letters, 265(3), 726-742. Hilde, T. W., & Chao-Shing, L. (1984). Origin and evolution of the West Philippine Basin: a new interpretation. Tectonophysics, 102(1-4), 85-104. Hosono, T., Nakano, T., & Murakami, H. (2003). Sr–Nd–Pb isotopic compositions of volcanic rocks around the Hishikari gold deposit, southwest Japan: implications for the contribution of a felsic lower crust. Chemical Geology, 201(1), 19-36. Huang, K.-F., You, C.-F., Liu, Y.-H., Wang, R.-M., Lin, P.-Y., & Chung, C.-H. (2010). Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25(7), 1019-1024. Ishihara, K., & Yoshida, A. (1992). Configuration of the Philippine Sea slab and seismic activity around Kyushu. J. Seismol. Soc. Jpn, 45, 45-51. Iwasaki, T., Hirata, N., Kanazawa, T., Melles, J., Suyehiro, K., Urabe, T., Shimamura, H. (1990). Crustal and upper mantle structure in the Ryukyu Island Arc deduced from deep seismic sounding. Geophysical journal international, 102(3), 631-651. Jeffcoate, A. B., Elliott, T., Thomas, A., & Bouman, C. (2004). Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC‐ICP‐MS. Geostandards and Geoanalytical Research, 28(1), 161-172. Kasemann, S. A., Jeffcoate, A. B., & Elliott, T. (2005). Lithium isotope composition of basalt glass reference material. Analytical Chemistry, 77(16), 5251-5257. Kincaid, C., & Sacks, I. S. (1997). Thermal and dynamical evolution of the upper mantle in subduction zones. Journal of Geophysical Research: Solid Earth, 102(B6), 12295-12315. Kogiso, T., Tatsumi, Y., & Nakano, S. (1997). Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148(1-2), 193-205. Košler, J., Magna, T., Mlčoch, B., Mixa, P., Nývlt, D., & Holub, F. (2009). Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chemical Geology, 258(3), 207-218. Labanieh, S., Chauvel, C., Germa, A., & Quidelleur, X. (2012). Martinique: a clear case for sediment melting and slab dehydration as a function of distance to the trench. Journal of Petrology, 53(12), 2441-2464. Lee, C.-S., Shor, G. G., Bibee, L., Lu, R. S., & Hilde, T. W. (1980). Okinawa Trough: origin of a back-arc basin. Marine Geology, 35(1-3), 219-241. Leeman, W. P., Tonarini, S., Chan, L. H., & Borg, L. E. (2004). Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chemical Geology, 212(1), 101-124. Letouzey, J., & Kimura, M. (1986). The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 125(1-3), 209-230. Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P., & Zimmerman, M. (2005). Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochimica et Cosmochimica Acta, 69(3), 735-751. Magna, T., Wiechert, U., Grove, T. L., & Halliday, A. N. (2006). Lithium isotope fractionation in the southern Cascadia subduction zone. Earth and Planetary Science Letters, 250(3), 428-443. Marschall, H. R., Altherr, R., & Rüpke, L. (2007). Squeezing out the slab—modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chemical Geology, 239(3), 323-335. Marschall, H. R., von Strandmann, P. A. P., Seitz, H.-M., Elliott, T., & Niu, Y. (2007). The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 262(3), 563-580. Millot, R., Guerrot, C., & Vigier, N. (2004). Accurate and High‐Precision Measurement of Lithium Isotopes in Two Reference Materials by MC‐ICP‐MS. Geostandards and Geoanalytical Research, 28(1), 153-159. Millot, R., Scaillet, B., & Sanjuan, B. (2010). Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochimica et Cosmochimica Acta, 74(6), 1852-1871. Miyazaki, K., Ozaki, M., Saito, M., & Toshimitsu, S. (2016). The Kyushu-Ryukyu Arc. The Geology of Japan. London: Geological Society, 139-174. Moriguti, T., & Nakamura, E. (1998). Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth and Planetary Science Letters, 163(1), 167-174. Moriguti, T., Shibata, T., & Nakamura, E. (2004). Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition. Chemical Geology, 212(1), 81-100. Nakamura, H., & Iwamori, H. (2009). Contribution of slab-fluid in arc magmas beneath the Japan arcs. Gondwana Research, 16(3), 431-445. Nishio, Y., Nakai, S. i., Ishii, T., & Sano, Y. (2007). Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction: Constraints on the origin of the DUPAL anomaly. Geochimica et Cosmochimica Acta, 71(3), 745-759. Parkinson, I. J., Hammond, S. J., James, R. H., & Rogers, N. W. (2007). High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth and Planetary Science Letters, 257(3), 609-621. Peacock, S. M. (1990). Fluid processes in subduction zones. Science, 248(4953), 329-337. Peacock, S. M. (1991). Numerical simulation of subduction zone pressure-temperature-time paths: constraints on fluid production and arc magmatism. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 335(1638), 341-353. Peacock, S. M., Rushmer, T., & Thompson, A. B. (1994). Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2), 227-244. Peacock, S. M. (2003). Thermal structure and metamorphic evolution of subducting slabs. Inside the subduction factory, 7-22. Pearce, J. A., & Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1), 251-285. Pistiner, J. S., & Henderson, G. M. (2003). Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214(1), 327-339. Plank, T. (2014). The chemical composition of subducting sediments. Treatise on Geochemistry, 4, 607-629. Richter, F. M., Davis, A. M., DePaolo, D. J., & Watson, E. B. (2003). Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67(20), 3905-3923. Rudnick, R. L., & Ionov, D. A. (2007). Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid–rock reaction. Earth and Planetary Science Letters, 256(1), 278-293. Ryan, J. G., & Langmuir, C. H. (1987). The systematics of lithium abundances in young volcanic rocks. Geochimica et Cosmochimica Acta, 51(6), 1727-1741. Salters, V. J., & Stracke, A. (2004). Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5). Schuessler, J. A., Schoenberg, R., & Sigmarsson, O. (2009). Iron and lithium isotope systematics of the Hekla volcano, Iceland—evidence for Fe isotope fractionation during magma differentiation. Chemical Geology, 258(1), 78-91. Seno, T., Stein, S., & Gripp, A. E. (1993). A model for the motion of the Philippine Sea plate consistent with NUVEL‐1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10), 17941-17948. Seyfried, W., Janecky, D., & Mottl, M. (1984). Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochimica et Cosmochimica Acta, 48(3), 557-569. Seyfried, W. E., Chen, X., & Chan, L. H. (1998). Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: An experimental study at 350 degrees C, 500 bars. Geochimica et Cosmochimica Acta, 62(6), 949-960. doi:Doi 10.1016/S0016-7037(98)00045-3 Shinjo, R. (1999). Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system. Chemical Geology, 157(1), 69-88. Shinjo, R., Chung, S. L., Kato, Y., & Kimura, M. (1999). Geochemical and Sr‐Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth, 104(B5), 10591-10608. Shinjo, R., Woodhead, J. D., & Hergt, J. M. (2000). Geochemical variation within the northern Ryukyu Arc: magma source compositions and geodynamic implications. Contributions to Mineralogy and Petrology, 140(3), 263-282. doi: 10.1007/s004100000191 Staudigel, H., Davies, G., Hart, S. R., Marchant, K., & Smith, B. M. (1995). Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites417/418. Earth and Planetary Science Letters, 130(1-4), 169-185. Strelow, F., Weinert, C., & Van der Walt, T. (1974). Separation of lithium from sodium, beryllium and other elements by cation-exchange chromatography in nitric acid-methanol. Analytica Chimica Acta, 71(1), 123-132. Taira, A., Okada, H., Whitaker, J., & Smith, A. (1982). The Shimanto Belt of Japan: cretaceous-lower Miocene active-margin sedimentation. Geological Society, London, Special Publications, 10(1), 5-26. Takami, M., Takemura, R., Nishimura, Y., & Kojima, T. (1999). Reconstruction of oceanic plate stratigraphies and unit division of Jurassic-Early Cretaceous accretionary complexes in the Okinawa Islands, central Ryukyu Island Arc. Journal-Geological Society of Japan, 105(12), 866-880. Takeuchi, M. (2010). Jurassic accretionary complex of Chichibu belt and Sanpozan belt in Ryukyu arc. Geological Society of Japan, 201-207. Tang, M., Rudnick, R. L., & Chauvel, C. (2014). Sedimentary input to the source of Lesser Antilles lavas: a Li perspective. Geochimica et Cosmochimica Acta, 144, 43-58. Tatsumi, Y. (1986). Formation of the volcanic front in subduction zones. Geophysical Research Letters, 13(8), 717-720. Toksöz, M. N., Minear, J. W., & Julian, B. R. (1971). Temperature field and geophysical effects of a downgoing slab. Journal of Geophysical Research, 76(5), 1113-1138. Tomascak, P. B., Carlson, R. W., & Shirey, S. B. (1999). Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS. Chemical Geology, 158(1), 145-154. Tomascak, P. B., Langmuir, C. H., le Roux, P. J., & Shirey, S. B. (2008). Lithium isotopes in global mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 72(6), 1626-1637. Tomascak, P. B., Magna, T., & Dohmen, R. (2015). Advances in lithium isotope geochemistry: Springer. Tomascak, P. B., Widom, E., Benton, L. D., Goldstein, S. L., & Ryan, J. G. (2002). The control of lithium budgets in island arcs. Earth and Planetary Science Letters, 196(3), 227-238. Walker, J., Carr, M., Patino, L., Johnson, C., Feigenson, M., & Ward, R. (1995). Abrupt change in magma generation processes across the Central American arc in southeastern Guatemala: Flux-dominated melting near the base of the wedge to decompression melting near the top of the wedge. Contributions to Mineralogy and Petrology, 120(3), 378-390. Walker, J. A., Mickelson, J. E., Thomas, R. B., Patino, L. C., Cameron, B., Carr, M. J., Edwards, R. L. (2007). U‐series disequilibria in Guatemalan lavas, crustal contamination, and implications for magma genesis along the Central American subduction zone. Journal of Geophysical Research: Solid Earth, 112(B6). Walker, J. A., Teipel, A. P., Ryan, J. G., & Syracuse, E. (2009). Light elements and Li isotopes across the northern portion of the Central American subduction zone. Geochemistry, Geophysics, Geosystems, 10(6). Wunder, B., Meixner, A., Romer, R. L., & Heinrich, W. (2006). Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contributions to Mineralogy and Petrology, 151(1), 112-120. Wunder, B., Meixner, A., Romer, R. L., Feenstra, A., Schettler, G., & Heinrich, W. (2007). Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chemical Geology, 238(3), 277-290. Zack, T., Tomascak, P. B., Rudnick, R. L., Dalpé, C., & McDonough, W. F. (2003). Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth and Planetary Science Letters, 208(3), 279-290. 磯崎行雄, & 西村祐二郎. (1989). 南琉球石垣島のジュラ紀付加コンプレックス富崎層と後期中生代のアジア東縁収束域. 地質学論集(33), 259-275. 楊秉澔 (2014) 岩石鋰同位素的分析方法:應用多接收感應耦合電漿質譜術。國立台灣大學海洋研究所碩士論文,共89頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2415 | - |
dc.description.abstract | 鋰有兩個穩定同位素,6Li與7Li,在過去的研究中,鋰同位素被視為具有探討殼幔循環潛力的同位素系統,這是基於以下兩個特性:(一)、鋰同位素在地表的低溫環境下,容易發生同位素分化;(二)、7Li相較6Li更快速由岩石進入流體中,造成流體中的d7Li會明顯上升。然而,在大部分洋內弧的火山岩中,卻發現:(一)、d7Li和流體指標(e.g. Li/Y, Pb/Ce, U/Th, and Sr/Y)不存線性關係;(二)、d7Li與普通中洋脊玄武岩的範圍接近,且大部分樣本落在普通中洋脊玄武岩的範圍內,這些特徵使得鋰同位素的示蹤能力受到質疑。因此,本研究採用第四紀、SiO2< 57 wt.%且有完善主量元素、微量元素、鍶、釹與鉛同位素資料的琉球弧火山岩(九州南部、琉球北部與琉球中部),藉由報導其鋰同位素來釐清鋰同位素在隱沒帶的特徵與演化。
實驗方法上,前處理皆於國立臺灣大學海洋研究所建置的無塵室完成,每個樣本秤重約25 mg的岩石粉末,並確保粉末在溶樣後完全溶解於溶劑中;樣本的純化使用兩次的陽離子交換層析法,搭配樹酯AG50W-X8 resin (200-400 mesh; hydrogen form)與1M HNO3+80v/v%的提洗液,第一次去除樣本中大部分的元素,第二次則將會干擾分析的Ti、Na進一步排除。洗出液的檢測於國立臺灣大學地質科學系的孫賢鉥紀念實驗室完成,鋰濃度使用四極桿感應耦合電漿質譜儀Agilent 7700x分析,確認各樣本濃度後,再將各樣本稀釋至相同濃度並利用多接收感應耦合電漿質譜儀(Nu plasma II)分析其d7Li。 琉球弧火山岩的鋰同位素系統(Li: 4.61 ~ 13.3 ppm, d7Li: -2.44 ~ +9.40)與大部分全球洋內弧有相似的特徵,值得注意的是,在琉球弧火山岩各區段的樣本中,九州南部(d7Li: -2.44 ~ +2.86)比琉球北部與中部(d7Li: +3.49 ~ +9.40)的d7Li更低,推測是受到隱沒物質脫水釋出的流體與隱沒板塊表層溫度的影響。隱沒入琉球隱沒系統的沉積物有兩個,四萬十頁岩(d7Li: -2.7 and -1.5)與菲律賓海盆沉積物(d7Li: +5.9),其中四萬十頁岩分佈在九州南部以及琉球北部,這顯示九州南部的低鋰同位素特徵與沉積物的分佈位置無關。本研究認為這個現象與隱沒板塊表層的溫度有關,在九州南部地區,隱沒板塊表層的溫度是整個琉球最低的區段,低溫的狀態使得隱沒板塊在表層的脫水程度較低,隱沒物質—四萬十頁岩的低d7Li訊號越有機會被保存在隱沒板塊中,接著在隱沒板塊隱沒達90公里深左右的位置脫水,將低d7Li的訊號帶入島弧岩漿源,塑造出九州南部較低的d7Li特徵。 基於琉球弧火山岩的研究可以更加釐清鋰同位素在隱沒帶的地球化學特徵與演化:在島弧火山岩中,鋰同位素主要取決於,岩漿源獲取的流體訊號,而這個流體訊號受到隱沒沉積物與隱沒板塊表層溫度的影響,也就是說鋰同位素不僅可以探討殼幔循環的議題,還可以幫助鑑別隱沒沉積物與隱沒板塊表層的溫度。 | zh_TW |
dc.description.abstract | Li stable isotopes, 6Li and 7Li, have been proposed to be a potential tracer for crust-mantle recycling, based on two important geochemical characteristics: Firstly, the fractionation of Li isotopes occurs in the near-surface rock-fluid interactions; secondly, d7Li value in the liquid phase increases as a result. However, d7Li values in volcanic rocks of most intra-oceanic arcs do not vary with indicators of fluid addition in magma sources (e.g. Li/Y, Pb/Ce, and U/Th), and have similar range to those of N-MORB. To better understand the evolution of Li in the subduction zone, lithium isotopic compositions of Quaternary mafic rocks from the volcanic front of the Ryukyu arc, including the south Kyushu-, the north Ryukyu- and the central Ryukyu arcs, were determined and compiled with their abundances of major elements, trace elements, and Sr-Nd-Pb radiogenic isotopes in this study.
Li in sample solution digested from ~25 mg rock powder, was extracted and purified by cation exchange chromatography using AG50W-X8 resin (200-400 mesh; hydrogen form) and an eluent of 1M HNO3+80v/v% methanol in the clean room of Institute of Oceanography, NTU. Dual column separation was conducted in our method in order to sufficiently remove Ti and Na from the Li eluates. For the following instrumental analyses, Li concentration was analyzed by ICP-QMS (Agilent 7700x), and d7Li was determined by MC-ICP-MS (Nu plasma II) in the Shen-Su Sun Memorial Lab, Department of Geosciences, NTU. The variation and correlation between Li contents (4.61 to 13.3 ppm) and d7Li (-2.44 to +9.40) in the Ryukyu arc volcanic rocks also have the common geochemical characteristics in those of the other intra-oceanic arcs that have been mentioned above. Nevertheless, mafic volcanic rocks in the south Kyushu show relative lighter Li isotopic compositions (d7Li: -2.44 to +2.86) than those in the north and central Ryukyu arcs (d7Li: +3.49 to +9.40). The fluid from dehydration of sediments and altered oceanic crust as well as the thermal structure in the subducting slab are the main causes of the spatial difference in d7Li. Shimanto shale (d7Li: -2.7 and -1.5) and pelagic sediments on the Philippine Sea Plate (d7Li: +5.9) representatives of subducting sediments in the Ryukyu arc, resulted in the large variation of d7Li in the Ryukyu arc magmatism. As a matter of fact, the Shimanto shale of low d7Li covers on both of the south Kyushu and north Ryukyu arcs, and then surface temperature of the subducting slab plays the key role that relative lower temperature of the subducting plate in the south Kyushu area cause low degree of dehydration to shallow depth, and addition of fluid with significant slab Li isotopic features in the arc magma source. This study of Ryukyu arc volcanic rocks gives an insight into Li isotopic characteristics and evolution in subduction system: Li isotopic variation of mafic rocks in an intra-oceanic arc is mainly affected by the fluid that is dehydrated from subducting slabs and adding into the corresponding magma source. Li isotopes are a powerful tracer for crust-mantle recycling as a proxy for sediments and thermal structure in the subducted slab. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:39:57Z (GMT). No. of bitstreams: 1 ntu-106-R03241317-1.pdf: 4156975 bytes, checksum: ca7913a2d19476b32b1844f59b7210f7 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
摘要 III Abstract V 圖目錄 IX 表目錄 XI 第一章 緒論 1 第二章 鋰同位素在島弧火山岩的前人研究 3 2-1鋰同位素概述 3 2-2隱沒帶的鋰同位素演化 3 2-3島弧火山岩鋰同位素的影響因子 6 2-3-1礦物的控制 6 2-3-2地殼混染時發生擴散分餾 6 2-3-3隱沒沉積物 11 2-3-4隱沒板塊 13 第三章 琉球島弧的地質背景與樣本簡介 19 3-1琉球隱沒系統 19 3-2琉球島弧的岩漿活動 22 3-3增積岩體的分布 25 3-3-1四萬十帶(Shimanto Belt) 25 3-3-2侏羅紀形成的增積岩體 25 3-4上部地函的同位素組成 25 3-5樣本概述 28 第四章 鋰同位素分析方法 35 4-1樣本的前處理 35 4-1-1樣本溶樣 35 4-1-2離子交換層析(Ion Exchange Chromatography) 37 4-2質譜儀分析 40 4-2-1四極桿感應耦合電漿質譜術(Inductive Coupled Plasma-Quadrupole Mass Spectrometry) 40 4-2-2多接收感應耦合電漿質譜術(Multiple Collector Inductively Coupled Plasma Mass Spectrometry) 42 4-3樣本前處理的品質控制 45 4-3-1國際參考樣 45 4-3-2空白(blank) 45 4-3-3回收率 45 4-3-4鋰洗出液的基質元素 46 第五章 分析結果 49 5-1鋰濃度 49 5-2鋰同位素比值 49 第六章 討論 55 6-1海水換質作用 55 6-2地殼混染 58 6-3上部地函的不均勻性 58 6-4隱沒物質的貢獻(slab contribution) 60 6-4-1沉積物熔體與換質海洋地殼脫水 60 6-4-2源自隱沒板塊的流體 65 6-5其他影響島弧火山岩鋰同位素的因子 68 6-5-1礦物的控制 68 6-5-2隱沒板塊的表層溫度 68 6-6隱沒系統的鋰同位素演化 69 第七章 結論 71 參考文獻 73 | |
dc.language.iso | zh-TW | |
dc.title | 隱沒帶的鋰同位素特徵:以琉球弧為例 | zh_TW |
dc.title | Lithium isotopes in subduction zone: a perspective from the Ryukyu arc | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 彭君能(Kwan-Nang Pang),林德嫻(Te-Hsien Lin),鍾孫霖(Sun-Lin Chung) | |
dc.subject.keyword | 脫水作用,鋰同位素,隱沒帶,琉球弧,穩定同位素, | zh_TW |
dc.subject.keyword | dehydration,Lithium isotopes,subduction zone,the Ryukyu arc,stable isotopes, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU201702080 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-08-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 4.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。