Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24153
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為
dc.contributor.authorShiu-Ting Chanen
dc.contributor.author詹琇婷zh_TW
dc.date.accessioned2021-06-08T05:17:10Z-
dc.date.copyright2011-08-08
dc.date.issued2011
dc.date.submitted2011-07-29
dc.identifier.citationChapter 1 Introduction
References
[1] M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Nature (London), 412,
805 (2001).
[2] J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. Thewalt, N. L. Rowell,
J.-P. Noël, and D. C. Houghton, Phys. Rev. Lett, 66, 1362 (1991).
[3] J. Mathews, R. T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, and
J.Menendez, Appl. Phys. Lett., 97, 221912 (2010).
[4] M. H. Liao, T.-H. Cheng, and C. W. Liu, Appl. Phys. Lett., 89, 261913
(2006).
[5] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel,
Opt. Lett. 35, 679 (2010).
[6] M. H. Liao, T.-H. Cheng and C. W. Liu, Appl. Phys. Lett, 89, 261913 (2006).
[7] A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, R. E. Leibenguth, S.P.
Hui, C. J. Zydzik, K. W. Goossen, J. D. Wynn, B. J. Tseng, J. Lopata, J. A.
Walker, J. E. Cunningham, and L. A. D’Asaro, IEEE Photon. Technol. Lett., 11,
128 (1999)
[8] K. W. Goossen, J. A. Walker, L. A. D’ Asaro, S. P. Hui, B. Tseng, R. Leibenguth,
D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L Lentine, and D. A. B. Miller, IEEE Photon. Technol. Lett., 7, 360 (1995) [9] M. H. Liao, T.-H. Cheng and C. W. Liu, Appl. Phys. Lett, 89, 261913 (2006).
[9] H. Presting, T. Zinke, A. Splett, H. Kibbel, and M. Jaros, Appl. Phys. Lett, 69,
2376 (1996).
Chapter 2 Doping Dependence of Competitive Radiative Recombination between Direct and Indirect Transitions in Germanium
References
[1] C. W. Liu, M. H. Lee, M.-J. Chen, I. C. Chen, and C.-F. Lin, Appl. Phys. Lett., 76, 1516 (2000).
[2] Xiaochen Sun, Jifeng Liu, Lionel C. Kimerling, and Jurgen Michel, Appl. Phys. Lett., 95, 011911 (2009).
[3] M. El Kurdi,T. Kociniewski,T.-P. Ngo,J. Boulmer,D. Débarre,P. Boucaud,J. F. Damlencourt,O. Kermarrec,and D. Bensahel Appl. Phys. Lett., 94, 191107 (2009).
[4] Szu-Lin Cheng, Jesse Lu, Gary Shambat, Hyun-Yong Yu, Krishna Saraswat, Jelena Vuckovic, and Yoshio Nishi, Opt. Express, 17, 10019 (2009).
[5] M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud,
J. F. Damlencourt, O. Kermarrec, and D. Bensahel, Appl. Phys. Lett.
94, 191107 (2009). .
[6] T.-H. Cheng, C.-Y. Ko, C.-Y. Chen, K.-L. Peng, G.-L. Luo, C. W. Liu, and
H.-H. Tseng, Appl. Phys. Lett. 96, 091105 (2010).
[7] C. W. Liu, J. C. Sturm, Y. R. J. Lacroix, M. L. Thewalt, and D. D. Perovic, Appl. Phys. Lett. 65, 76 (1994)
[8] X. Xiao, C. W. Liu, J. C. Sturm, L. C. Lenchyshyn, and M. L. Thewalt, Appl. Phys. Lett. 60, 1720 (1992)
[9] D. J. Robbins, P. Calcott, and W. Y. Leong, Appl. Phys. Lett. 59, 1350 (1991)
[10] James C. Strum, Jpn. J. Appl. Phys. 33, 2329 (1994) [11] D. J. Robbins, P. Calcott, and W. Y. Leong, Appl. Phys. Lett. 59, 1350 (1991).
[11] Carson D. Jeffries, SCIENCE 189, 4207 (1975).
[12] N. Peyghambarian and H. M. Gibbs, J. Opt. Soc. Am. B 2, 7 (1985).
[13] A.H. Simon, Physical Review B 46, 16 (1992)
[14] G.A. Thomas, Phys. Rev. B 19, 2 (1979)
[15] Angela E. Mayer, J. Phys. C: Solid State Phys. 12, (1979)
[16] W. Klingenstein, Phys. Rev. B 20, 8 (1979)
[17] J.R. Haynes, J. Phys. Chem. Solids 8, 392 (1959)
[18] J. I. Pankove, Phys. Rev., 140, A2059 (1965).
[19] J. I. Pankove, Optical Process in Semiconductors (Englewood Cliffs, N.J. : Prentice-Hall, 1971)
[20] Cheng Li, Yanghua Chen, Zhiwen Zhou, Hongkai Lai, and Songyan Chen , Appl. Phys. Lett., 95, 251102(2009)
[21] L. Vina, and M. Cardona, Phys. Rev. B, 34, 4 (1986)
Chapter 3 Biaxial Tensile Strain Effects on Photoluminescence of Different Orientated Germanium Wafers
References
[1] M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Nature (London)
412, 805 (2001).
[2] J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. Thewalt, N. L.
Rowell, J.-P. Noël, and D. C. Houghton, Phys. Rev. Lett. 66, 1362 (1991).
[3] J. Mathews, R. T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, and J.
Menendez, Appl. Phys. Lett. 97, 221912 (2010).
[4] T.-H. Cheng, C.-Y. Ko, C.-Y. Chen, K.-L. Peng, G.-L. Luo, C. W. Liu, and
H.-H. Tseng, Appl. Phys. Lett. 96, 091105 (2010).
[5] M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S.
Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96, 041909 (2010).
[6] M. H. Liao, M.-J. Chen, T. C. Chen and P.-L. Wang, C. W. Liu , Appl. Phys. Lett.86, 223502, (2005)
[7] T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C.
W. Liu, and H.-H. Tseng, Appl. Phys. Lett. 96, 211108 (2010).
[8] T.-H. Cheng, C.-Y. Ko, C.-Y. Chen, K.-L. Peng, G.-L. Luo, C. W. Liu, and
H.-H. Tseng, Appl. Phys. Lett. 96, 091105 (2010).
[9] X. Sun, J. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett., 95, 011911
(2009).
[10] J. I. Pankove, Phys. Rev., 140, A2059 (1965).
[11] C. W. Liu, M. H. Lee, M.-J. Chen, I. C. Chen, and C.-F. Lin, Appl. Phys.
Lett. 76, 1516 (2000).
[12] C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).
[13] C. Y.-P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992).
Chapter 4 Low Temperature Photoluminescence in Germanium
References
[1] T.-H. Cheng, C.-Y. Ko, C.-Y. Chen, K.-L. Peng, G.-L. Luo, C. W. Liu, and
H.-H. Tseng, Appl. Phys. Lett. 96, 091105 (2010).
[2] J. Wagner et al, Phys. Rev. B 30, 7030 (1984).
[3] G. A. Thomas, E. I. Blount, and M. Capizzi, Phys. Rev. B 19, 1979
[4] M. Cardona et al, Phys. Rev. B 34, 2586 (1986).
[5] C. H. Henry and D. V. Lang, Phys. Rev. B 15, 1975
[6] A. G. Milnes, Deep Impurities in Semiconductors, Wiley, New York, 1973
[7] V. P. Markevich, I. D. Hawkins, and A. R. Peaker, Appl. Phys. Lett. 81, 2002.
[8] C. H. Henry and D. V. Lang, Phys. Rev. B 15, 1977.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24153-
dc.description.abstract本論文中,我們藉由光激發光的激發方式,觀察到鍺的直接能隙和非直接能隙的放光現象,同時我們探討兩者之間競爭性的發光復合機制。
高濃度磣雜N型的鍺可使電子的費米能階往高能量移動並使得直接能隙的放光有所增加,高濃度磣雜P型的鍺可減少直接能隙與非直接能隙的能帶差,累積更多的電子在直接能隙並產生增強放光的現象。無論是直接能隙或非直接能隙都可藉由物理模型去加以模擬並解釋。
外加雙軸張應力可減少直接能隙與非直接能隙的能帶差,或者降低直接能隙與費米能接的差,而累積更多的電子在直接能隙並產生增強放光的現象。藉由物理模型得到的能帶值和藉由理論計算出的能帶值兩者相當吻合。
在降低溫度的光激發光實驗,利用SRH模型及Thermal quenching 模型,提出電子電洞可經由缺陷非輻射復合,而使得放光的總強度減少。
zh_TW
dc.description.abstractIn this thesis, both direct and indirect transitions of photoluminescence are observed in Ge and the competitive radiative recombination between direct and indirect transition are discussed.
High doping concentration in n type Ge moves the electron Fermi level upwards and the increase in electron population in direct valley enhance the luminescence. In p type Ge, the reduction in bang gap difference between the L and Γ valleys results in the enhancement of direct band gap emission. Each spectrum can be fitted by the sum of direct and indirect transition models.
The reduction in band gap difference between the L and Γ valleys by biaxial tensile strain increases the electron population in the direct valley and leads to strong enhancement on (100) and (110) Ge. On the other hand, the reduction in the energy difference between the EcΓ and Efn, which is responsible to the enhanced PL on (111) Ge. The direct and indirect band gaps can be extracted from the photoluminescence spectra and is consistent with the calculations using K.P and deformation potential methods for valence band and conduction band, respectively.
We demonstrate SRH model and thermal quenching model to explain the temperature dependent photoluminescence experiments. At high temperature, minority carriers would be captured by traps, which results in non-radiative recombination. Hence the integrated photoluminescence decreases with high temperature.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:17:10Z (GMT). No. of bitstreams: 1
ntu-100-R98941069-1.pdf: 1983584 bytes, checksum: 972e96bb63f0ab4b9bfdb21fe19bf81d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
List of Figures...VIII
List of Tables....VIII
Chapter 1 Introduction...1
1.1 Motivation.......1
1.2 Organization.....2
References...............4
Chapter 2 Doping Dependence of Competitive Radiative Recombination between Direct and Indirect Transitions in Germanium...............6
2.1 Introduction........6
2.2 Experimental Setup..7
2.3 Radiative Recombination Model for Indirect Transition..............9
2.3.1 Electron-Hole Plasma Recombination Model...9
2.3.2 Analysis of Electron-Hole-Plasma Recombination Model..................12
2.4 Radiative Recombination Model for Direct Transition..13
2.4.1 Direct Band Gap Recombination Model...13
2.4.2 The Band Tail Effect of Absorption Edge in Germanium..............14
2.5 Doping Dependent Photoluminescence of Germanium...17
2.5.1. Radiative Electron-Hole Recombination..........17
2.5.2. Photoluminescence and Discussion of High Doping Concentration n type Germanium........................19
2.5.3. Photoluminescence and Discussion of High Doping Concentration p type Germanium........................21
2.6 Summary............24
References.............25
Chapter 3 Tensile Strain Effects on Photoluminescence of Different Oriented Germanium Wafers......27
3.1 Introduction.......27
3.2 Device Structure and Experimental Setup.....28
3.2.1 Sample Prepararion and Measurement setup..28
3.2.2 Mechanical Strain Gear....................29
3.3 Strain-enhanced Photoluminescence of Direct Transition.............31
3.3.1 Strain-enhanced Photoluminescence of Direct Transition for Different Orientated Ge..........31
3.3.2 Fitting Results – Combination of Multi-transitions............35
3.3.3 Band Gap Reduction and Enhancement of Direct Transition for Three Orientated Ge Wafers.......40
3.4 Summary............45
References.............46
Chapter 4 Low Temperature photoluminescence in Germanium..............48
4.1 Introduction.......48
4.2 Low Temperature Photoluminescence of Germanium.....49
4.2.1 Experimental Results of Low Temperature Photoluminescence......49
4.2.2 Experimental Discussion.....53
4.3 Thermal Quenching in Photoluminescence of Germanium..54
4.3.1 Integrated photoluminescence Intensity with Different Temperature............54
4.3.2 Recombination Model and Thermal Quenching Model...55
4.3.3 Carrier Lifetime..60
4.4 Summary............63
References.............64
Chapter 5 Summary and Future Work......65
5.1 Summary............65
5.2 Future Work........66

List of Tables
Table.3-1. The fitting parameters of (a) (100) n-type Ge, (b) (110) n-type Ge, and (c) (111) p-type Ge with biaxial tensile strain...39
Table.4-1. The fitting parameters of two non-radiative recombination centers. From our fitting parameters, we calculate the non-recombination rate of two recombination centers at T= 200 K...60
List of Figures
Fig.2-1 Experimental setup for the photoluminescence measurement...........7
Fig.2-2 The response of the InGaAs detector used for spectra measurement...8
Fig.2-3 The concept of the EHP model. 3D density of states is used for both electron and holes in this figure...11
Fig.2-4 (a)The perturbation of band edges with non-homogeneously distributed impurities.
(b) Tails of state....16
Fig.2-5 The integrated PL intensity with different pumping powers. We use low laser pumping power (100mW) for our experiments...........19
Fig.2-6 The PL spectra of the n-type bulk Ge (100) and the intrinsic Ge (100) with laser pumping power 100mW. The direct transition from the Γ valley is more significant in n-Ge with higher doping concentration (Sb doped)......20
Fig.2-7 The band diagram shows that more electrons exist in direct valley with lower resistivity and extends band tail into band gap deeply...21
Fig.2-8 The PL spectra of the p-type bulk Ge (100) and the intrinsic Ge (100) with pumping power 100mW. The direct transition from the Γ valley is more significant in p-Ge with higher doping concentration (Ga doped)...22
Fig. 2-9 Energy shift for germanium with the carrier concentration 5х1020 cm-3 along the Λ direction of the Brillouin zone........23
Fig.3-1 Top view of lattice structure and natural craved surface for (a) (100), (b) (110), and (c) (111) substrate and the shape of three orientation sample for biaxial tensile strain...29
Fig.3-2 (a) Top view of mechanical strain gear for biaxial strain. (b) Side view of biaxial strain mechanical setup gear.............30
Fig.3-3 The normalized PL spectra of n-type bulk Ge (100) under biaxial tensile strain at room temperature. The intensity of direct band gap transition increases with increasing strain......33
Fig.3-4 The normalized PL spectra of n-type bulk Ge (110) under biaxial tensile strain at room temperature....34
Fig.3-5 (The normalized PL spectra of p-type bulk Ge (111) under biaxial tensile strain at room temperature....34
Fig.3-6 Photoluminescence spectra of (100) strained-Ge fitted by the direct transition and indirect transition models. The transitions from conduction band of direct and indirect valleys to heavy hole and light hole bands contribute to the strained-Ge optical transitions. (a)0% ,
(b)0.12%, (c)0.24%, (d)0.37% strain....36
Fig.3-7 Photoluminescence spectra of (110) strained-Ge fitted by the direct transition and indirect transition models. (a)0% , (b)0.102%, (c)0.205%, (d)0.315% strain...37
Fig.3-8 photoluminescence spectra of (111) strained Ge fitted by the direct transition and indirect transition models. (a) 0% , (b) 0.115% , (c) 0.226%...........38
Fig.3-9 The energy difference between the band gap reduction in Γ valley and the band gap reduction in the lowest L valleys under different biaxial tensile strain....41
Fig.3-10 The schematic diagrams of band structures of Ge without strain (solid line) and with biaxial tensile strain (dashed line). (a) The band gap reduction in L valleys and Γ valley on (100) Ge. (b) The band gap reduction in split L valleys and Γ valley on (110) Ge. (c) The band gap reductions in split L valleys and Γ valley on (111) Ge....43
Fig.3-11 The calculation of ∆Efn of strained (111) Ge with excitation electron densities of 1х1016 and 1х1018 cm−3. The inset shows the increase in density ratio of direct to indirect valleys under different biaxial tensile strain....44
Fig.4-1 Photoluminescence spectra of p type (100) bulk Ge at the temperature from 15K to 300K with different doping concentration. (a) 4x1017 cm-3 , (b) 2x1017 cm-3, (c) 2x1016 cm-3, (d) 1x1015 cm-3.....49
Fig.4-2 (a) Band diagram at 15 K and the energy difference between L and Γ is 148meV. (b) Energy difference between two valleys is 140meV at room temperature.....52
Fig.4-3 The temperature dependent direct and indirect band gaps of Ge and the carrier distribution in direct (Γ) valley...............52
Fig.4-4 The PL spectra of p-type Ge for various doping concentration at 15K. The p-type Ge (with high doping concentration) has high NP intensity and small cutoff energy...............53
Fig.4-5 The integrated PL intensity as a function of temperature (from 15 K to 200 K) with different doping concentration........54
Fig.4-6 The defect energy level of gallium and oxygen in germanium............57
Fig.4-7 The schematic diagram of energies vs lattice coordinate. (a) Smaller activation energy for oxygen impurity level (7meV). (b) Larger activation energy for gallium impurity level (40meV).....58
Fig.4-8 The impurity level of (a) oxygen (b) gallium in bulk germanium........59
Fig.4-9 The ratio of the recombination rate of impurity level gallium and oxygen verses doping concentration (Ga-doped) in germanium. With the higher doping concentration, the recombination rate of impurity level gallium increases.....61
Fig.4-10 The recombination rate of two recombination rate verses temperature with different doping concentration. (a) 1X1015 cm -3, (b) 2X1016 cm -3 , (c) 2X10 17 cm-3 (d) 4X10 17 cm -3..............62
dc.language.isozh-TW
dc.title以光激發光研究鍺半導體之光學躍遷機制zh_TW
dc.titleThe Study of Optical Transition in Germanium by Photoluminescenceen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林吉聰,胡振國,林中一,郭宇軒
dc.subject.keyword鍺,直接能隙,光激發光,張應力,zh_TW
dc.subject.keywordgermanium,direct band gap,photoluminescence,tensile strain,en
dc.relation.page66
dc.rights.note未授權
dc.date.accepted2011-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved