Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24127
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章
dc.contributor.authorYa-Ting Changen
dc.contributor.author張雅婷zh_TW
dc.date.accessioned2021-06-08T05:16:33Z-
dc.date.copyright2006-01-27
dc.date.issued2006
dc.date.submitted2006-01-24
dc.identifier.citation[1] 王如意, 2003, “動態遞迴式類神經網路之研究及其農業水資源之應用”, 農業水利科技研究發展九十一年度成果發表討論論文集
[2] 王如意、潘宗毅、宋文元, 2004, “遞迴式類神經網路之系統辨識及其於降雨—逕流模擬之研究”, 台灣水利, 52(4): 1-14
[3] 王安培、鄭博文, 1998, “模糊決策在水庫操作之應用”, 中原學報, 26(3): 17-25
[4] 王本德、張力, 1993, “綜合利用水庫洪水模糊優化調度”, 大陸水利學報1.
[5] 王定欽, 1994, “模糊理論與序列分析在河川流量預測上之研究”, 中正理工學院軍事工程系, 國科會研究報告
[6] 石明輝, 1999 ,「基因演算法在水庫多目標操作最佳化之應用」,交通大學土木工程研究所碩士論文
[7] 向子菁, 1999,「智慧型控制理論於水庫操作決策之研究」, 國立台灣大學農業工程研究所碩士論文
[8] 朱壽銓, 黃文政, 黃佩貞, 2000, “模擬法在水庫操作規線上之應用”,台灣水利, 48(4):53-63
[9] 周乃昉、顏君凌、鄭子璉、葉志堅, 2001, “曾文水庫運用規線修訂對灌溉標的用水量之影響”,九十年度農業工程研討會論文集, pp. 843-850
[10] 周世峰, 1994,「模糊集理論應用於建立水庫操作專家系統之研究」,台大農工所碩士論文
[11] 周惠成、陳守煜, 1992, “具模糊約束的多階段多目標系統模糊優化理論與模型”, 大陸水利學報, 2: 29-36
[12] 林國峰, 2004, “應用全面監督式訓練法則所建立之輻狀基底函數網路於洪水流量預測”, 水資源管理2004研討會, 6: 23-34
[13] 林敬章, 1992,「模糊理論應用於降雨分類之應用」, 國立臺灣海洋大學碩士論文
[14] 邱昱禎, 2003,「模糊規劃理論與優選法於水庫操作之研究」, 國立台灣大學生物環境系統工程研究所碩士論文
[15] 吳瑞賢、蘇文瑞、傅信祐, 1996, “水庫操作規線方法之研究”, 第八屆水利工程研討會,台灣大學
[16] 胡文盛,1994,「模糊線上水庫旱季操作之研究」,國立臺灣海洋大學河海工程研究所碩士論文
[17] 段鏞、傅金城, 2004, “適應性網路模糊推論系統在洪水演算之研究”, 農工學報, 50(3): 71-81
[18] 孫志鴻、詹仕堅, 1999, “類神經網路在集水區降雨逕流模擬之應用”, 國立臺灣大學理學院地理學系地理學報, 25: 1-14
[19] 孫建平, 1996,「類神經網路及其應用於降雨及逕流過程之研究」, 國立台灣大學農業工程研究所碩士論文
[20] 徐年盛、黃敏智, 2001, “模擬退火法決定日月潭水庫最佳規線之應用”, 九十年度農業工程研討會論文集, pp. 907-916
[21] 財團法人工業技術研究院能源與資源研究所, 1999, “石門水庫運轉資料作業系統研究報告”, 台灣省北區水資源局
[22] 張斐章, 1984,「應用線性規劃研究水庫配合農業用水之最佳運轉策略」, 國立台灣大學農業工程研究所碩士論文
[23] 張斐章、徐國麟, 1990, “利用模糊集理論推估河川流量之研究”, 中國農業工程學報, 36(4): 1-12
[24] 張斐章、黃源義、梁晉銘, 1993, “模糊推論模式之建立及其應用於水文系統之研究”,中國農業工程學報, 39(1): 71-83
[25] 張斐章、王文清, 1995, “模糊線性規劃於水資源規劃之應用”,臺灣水利, 43(1): 31-41
[26] 張斐章、黃金鐸、王文清, 1995, “運用模糊序率動態規劃於水庫操作之研究”, 台灣水利, 43(4): 37-48
[27] 張斐章、惠士奇, 1998, “灰色模糊序率動態規劃於水庫操作之應用”, 中國農業工程學報, 44(1): 34-49
[28] 張斐章、孫建平, 1997, “類神經網路及其應用於降雨-逕流過程之研究”,中國農業工程學報, 43(1): 9-25
[29] 張斐章、胡湘帆、黃源義, 1998, “反傳遞模糊類神經網路於流量推估之應用”, 中國農工學報, 44(2): 26-38
[30] 張斐章、許榮哲, 1999, “灰色模糊動態規劃於水庫即時操作之應用”, 台灣水利, 47(1): 44-53
[31] 張斐章、胡湘帆, 1999, “類神經網路於水文系統之研究”,生命科學簡訊, 13(3): 12-14
[32] 張斐章、梁晉銘, 1999, “類神經模糊推論模式在水文系統之研究”, 臺灣水利, 36(4): 1-12
[33] 張斐章、張麗秋, 2005,「類神經網路」, 東華書局
[34] 張斐章、胡湘帆、蕭錫清、張長圖, 2000, “模糊類神經網路於水庫即時入流量預測之應用”, 台電工程月刊, 618: 7-19
[35] 張斐章、陳莉, 1993, “遺傳演算法於專家系統中參數優選之研究, 中國農工學報, 39(2): 1-12
[36] 張麗秋, 2001,「智慧型演算之類神經網路於水文系統」,國立臺灣大學農業工程學研究所博士論文
[37] 梁晉銘、張斐章、陳彥璋, 2000, “複合演算類神經-模糊推論模式應用於洪水預測”, 中華水土保持學報, 31(3)
[38] 郭蒼霖, 2000,「遺傳演算法於多水庫最佳操作規線優選之應用」,交通大學土木工程研究所碩士論文
[39] 郭振泰、張武訓, 1984, “應用序率動態規劃於石門水庫運轉之研究”, 第二屆水利工程研討會論文集, pp.125-141
[40] 郭振泰、楊德良、簡振和, 1990, “石門水庫操作模式與自動化監控系統規劃研究報告”, 國立台灣大學水工試驗所
[41] 郭振泰等, 1991, “淡水河流域水庫及時優選操作之發展與應用”, 經濟部水資會八十科技八(二), 3(10)第078號
[42] 陳守煜, 1990, “多階段多目標决策系统模糊優選理論及其應用”, 大陸水利學報, 1: 1-10
[43] 陳守煜, 1995, “從研究汛期描述論水文系統模糊集分析的方法論”, 水學進展, 6(2): 133-138
[44] 陳守煜、姜治, 1990, “水資源系統多目標規劃分層模糊優選理論”, 大連理工大學學報, 31(1): 90-100
[45] 陳守煜、趙英琪, 1991, “模糊模式識別理論模型與水質評價”, 大陸水利學報, 6: 35-40
[46] 陳昶憲, 1992, “水庫防洪即時優選操作模式目標函數與限制式之探討”, 水利工程, 36: 90-96
[47] 陳昶憲、楊朝仲、王益文, 1996, “類神經網路於烏溪流域洪流預報之應用”, 中華水土保持學報, 27(4): 267-274
[48] 陳昶憲、黃尹龍, 2000, “倒傳遞與反傳遞類神經網路於洪流量預測之比較”, 台灣水利季刊, 48(3): 60-68
[49] 陳昶憲、蔡國慶, 1998, “應用於洪水演算類神經倒傳遞網路法最適參數推估”, 逢甲學報, 33: 39-56
[50] 陳昶憲、黃尹龍、吳青俊、蔡曜隆, 2001,“應用倒傳遞與反傳遞類神經網路模式於洪流量之預測”,台灣水利, 49(3): 65-77
[51] 陳莉, 1995,「以物件導向之遺傳演算法優選水庫運用規線之研究」, 國立臺灣大學農業工程學研究所博士論文
[52] 陳儒賢, 2003,「類神經網路於水文系統之研究」,台灣大學土木工程學研究所博士論文
[53] 陳韻如, 2001, 「大甲溪下游調蓄水池容量設計與風險分析之研究」, 國立台灣大學農業工程研究所碩士論文
[54] 章盛傑, 1994, 「遺傳演算法之研究及其於水文化學模式之應用」, 國立台灣大學農業工程研究所碩士論文
[55] 黃文政, 吳建民, 謝宏智, 1994, “模糊聚類模式之應用”, 第七屆水利工程研討會, pp. D21-D30
[56] 黃文政、蔡坤良, 1997, “水資源開發模糊模式之探討”, 臺灣水利, 45(2)
[57] 黃文政, 2000,「模糊理論在河川流量預測及水資源情勢分析之研究(1/2)」,國家科學委員會研究報告
[58] 黃文政, 2001,「模糊理論在河川流量預測及水資源情勢分析之研究(2/2)」,國家科學委員會研究報告
[59] 黃俊傑, 2004,「洪水時期水庫最佳操作之研究-以石門水庫為例」,國立中原大學土木工程學研究所碩士論文
[60] 黃振聖, 1995,「曾文水庫系統最佳營運與風險分析」, 國立台灣大學土木工程研究所碩士論文
[61] 黃振聖(1996) 郭振泰、黃振聖、張斐章、陳莉、賴昱宏, 1996年8月5日-6日, '乾旱期水庫營運規線之探討' ,第二屆海峽兩岸水利科技交流研討會論文集,台大工學院,pp. 221-241。
[62] 萬象、陳昶憲、郭振泰, 1990, “水庫防洪操作最佳控制模式之研究”,第五屆水利工程研討會, pp.186-199
[63] 劉新達, 1996,「類神經網路在水庫操作的應用」,國立交通大學土木工程研究所碩士論文
[64] 蕭金財、張良正, 1998, “多目標水庫最佳操作模式之建立與應用”, 臺灣水利, 46(1)
[65] 蕭金財、張良正, 2000, “應用平行序率最佳控制演算法於多目標水庫系統之優選操作”, 中國土木水利工程學刊, 12(3): 551-560
[66] 蘇明道、徐忠寶、陳維英, 1997, “石門水庫操作規則之推導及評估”, 台灣水利, 45(1): 58-68
[67] Altug, S, M. Y. Chow and H. J. Trussell, 1999, “Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis”, IEEE Trans. on Industrial Electronics, 46(6):1069-1079
[68] Atiya, A.F., S. M. El-Shoura, S. I. Shaheen and M. S. El-Sherif, 1999, “A comparison between neural-network forecasting techniques - Case study: River flow forecasting”, IEEE Transactions on Neural Networks, 10(2): 402-409
[69] Bagis, A. and Karaboga, D., 2004, “Artificial neural networks and fuzzy logic based control of spillway gates of dams”, Hydrological Processes, 18 (13): 2485-2501
[70] Becerikli, Y., A. F. Konar, T. Samad, 2003, “Intelligent optimal control with dynamic neural networks”, Neural Networks, 16(2): 251-259
[71] Bellman, R. E. and L. A. Zadeh, 1970, “Decision making in a fuzzy evnironment”, Management Sci., 17B(4): 141-164
[72] Beven, K., 1989. “Changing ideas in hydrology – the case of physically-based models”, Journal of Hydrology, 105: 157-172
[73] Blin, J. M., 1977, “Fuzzy Sets in Multiple criteria Decision- Making”, TIMS Studies in the Management Science, 6: 129-46
[74] Booker, Lashon B., 1982, “Intelligent Behavior as an Adaptation to the Task Environment”, PhD thesis, University of Michigan
[75] Brindle, A. ,1981, “Genetic Algorithms for Function Optimization”, PhD thesis, Dept. of Computing Science. University of Alberta
[76] Cai, X. M., D. C. Mckinney and L. S. Lasdon, 2001, “Solving nonlinear water management models using a combined genetic algorithm and linear programming approach”, Advances in Water Resources, 24(6): 667-676.
[77] Chandramouli, V., K. A. Kuppusamy and K. Manikandan, 2002, “Study on water sharing in a multi-reservoir system using a dynamic programming-neural network model”, International Journal of Water Resources Development, 18(3): 425-438.
[78] Chaneau, J. L., M.Gunaratne and A. G.Altschaeffl, 1987, “An Application of Type-2 Sets to Decision Making in Engineering”, In Analysis of Fuzzy Information. II: Artificial Intelligence and Decision Systems (Bezdek J., Ed.). CRC. Boca Raton, FL.
[79] Chang F. J., L. C. Chang and H. L. Huang, 2002, “Real time recurrent neural network for streamflow forecasting”, Hydrological Processes, 16: 2577-2588.
[80] Chang, F. J. and Y. T. Chang, 2006, “Adaptive neuro-fuzzy inference system for prediction of water level in reservoir”, Advance in Water Resources, 29: 1-10.
[81] Chang, F. J. and L. Chen, 1998, “Real-coded genetic algorithm for rule-based flood control reservoir management”, Water Resource Management, 12(3): 185-198.
[82] Chang, F. J., L. Chen and L. C. Chang, 2005, “Optimising the reservoir operation rule curves by genetic algorithms”, Hydrological Processes, 19: 2277-2289
[83] Chang, F. J. and Y. C. Chen, 2001, “A counterpropagation fuzzy - neural network modeling approach to real-time streamflow prediction”, Journal of Hydrology, 245: 153-164
[84] Chang, F. J. and Y. C. Chen, 2003, “Estuary water-stage forecasting by using radial basis function neural network”, Journal of Hydrology, 270: 158-165
[85] Chang, F. J., H. F. Hu and Y. C. Chen, 2001, “Counterpropagation fuzzy-neural network for streamflow reconstructing”, Hydrological Processes, 15(2): 219-232
[86] Chang, F. J., S. C. Hui and Y. C. Chen, 2002, “Reservoir operation using grey fuzzy stochastic dynamic programming”, Hydrological Processes, 16(12): 2395-2408.
[87] Chang, F. J. and Y. Y. Hwang, 1999. “A self-organization algorithm for real-time flood forecast”, Hydrological Processes, 13: 123-138.
[88] Chang, F. J., J. S. Lai and L. S. Kao, 2003, “Optimization of operation rule curves and flushing schedule in a reservoir”, Hydrological Processes, 17: 1623-1640
[89] Chang, F. J. and H. F. Lin., 2000, “The exemplar-aided constructor of hyper-rectangles learning algorithm for stream flow estimation”, Hydrological Processes, 14(1): 79-90
[90] Chang, L. C. and F. J. Chang, 2001, “Intelligent control for modeling of real time reservoir operation”, Hydrological Processes, 15(9): 1621-1634.
[91] Chang, L. C., F. J. Chang and Y. M. Chiang, 2003, “A two-step ahead recurrent neural network for streamflow forecasting”, Hydrological Processes, 18: 81-92
[92] Chang, L. C., F. J. Chang and Y. H. Tsai, 2005, “The fuzzy exemplar-based inference system for flood forecasting”, Water Resources Research, 41(2), W02005
[93] Chang, Y. T., L. C. Chang and F. J. Chang, 2005, “Intelligent control for modeling of real-time reservoir operation- part II: ANN with operating rule curves”, Hydrological Processes, 19: 1431-1444
[94] Chen, L. and F. J. Chang, 2005, “Applying a real-coded multi-population genetic algorithm to multi-reservoir operation”, Hydrological Processes (accepted)
[95] Chen, S. H., Y. H. Lin, L. C. Chang and F. J. Chang, 2005, “The strategy of building a flood forecast model by neuro-fuzzy network”, Hydrological Processes (in press)
[96] Cheng, C. T. and K. W. Chau, 2002, “Three-person multi-objective conflict decision in reservoir flood control”, European Journal of Operational Research, 142 (3): 625-631
[97] Cheng, C. T., 1999. “Fuzzy optimal model for the flood control system of the upper and middle reaches of the Yangtze River”, Hydrological Sciences Journal, 44(4): 573-582.
[98] Chiu, S. L., 1994, “Fuzzy model identification based on cluster estimation”, J. of Intelligent and Fuzzy Systems, 2(3): 267-278
[99] Cieniawski, S.E., J.W. Eheart, and S. Ranjithan, 1995, “Using genetic algorithms to solve a multi-objective groundwater monitoring problem”, Water Resources Research, 31(2): 399-409
[100] Davies, R. M. and J. Watton, 1995, “Intelligent control of an electrohydraulic motor drive system”, Journal of Mechatronics, 5(5): 527-540
[101] Djukanovic, M. B., M. S. Calovic, B.V. Vesovic and D.J. Sobajic, 1997, “Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference”, IEEE Transactions on Energy Conversion, 12(4): 375-381
[102] East, V. and M. J. Hall, 1994, “Water resources system optimization using genetic algorithms”, Hydroinformatics, 94 ,Proc. ,1st Int. Conf. on hydroinformatics, Balkema, Rotterdam, The Netherlands, pp.225-231
[103] Eshelman, L., J. Schaffer and J. David, 1992, “Real-coded genetic algorithms and interval-schemata”, Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp.187-202
[104] Fahmy, H. S., J. P. King, M. W. Wentzel and J. A. Seton, 1994, “Economic optimization of river management using genetic algorithms”, Paper No. 943034, ASCE Int. Summer Meeting, Am, Soc. of Agricultural Engrs.
[105] Fukushima, K., 1988, “Neocognitron: A hierarchical neural network capable of visual pattern recognition”, Neural Networks, 1: 119-130
[106] Goldberg, D. E. and C. H. Kuo, 1987, “Genetic algorithms in pipeline optimization”, Journal of Computing in Civil Engineering, 1(2): 128-141
[107] Goldberg, D. E., 1989, “Genetic algorithms in search, optimization, and machine learning”, Addison-Wesley, Reading, Mass
[108] Hall, W. A. and J. A. Dracup, 1970, “Water resources system engineering, Mcgraw-Hill Book Co.
[109] Hasebe, M., and Y. Nagayama, 2002, “Reservoir operation using the neural network and fuzzy systems for dam control and operation support”, Advances in Engineering Software, 33(5): 245-260
[110] Hecht-Nielsen R., 1987, “Counterpropagation Network”, Applied Optics, 26: 4979-4984
[111] Hecht-Nielsen R., 1990, “Applications of Counterpropagation Networks”, Neural Networks, 1: 131-139
[112] Holland, J. H., 1975, “Adaptation in natural and artificial systems”, 2nd ed., Mass. Inst. of Technol., Cambridge
[113] Hopfield, J. J. 1982, “Neural networks and physical systems with emergent collective computational abilities”, Proceeding of the National Academy of Scientists, 79: 2554-2558
[114] Hsu, K. L., H. V. Gupta and S. Sorooshian, 1995, “Artificial neural network modeling of the rainfall-runoff process”, Water Resources Research, 31(10): 2517-2530
[115] Hsu, S. K., 1995, “Shortage indices for water-resources planning in Taiwan”, Journal of Water Resources Planning and Management, 121(2): 119-131
[116] Hufschmidt, M. M. and M. B. Fiering. ,1966, “Simulation techniques for design of water-resources systems”, Harvard University Press, Cambridge, MA
[117] Jain, S. K., A. Das, and D. K. Srivastava, 1999, “Application of ANN for reservoir inflow prediction and operation”, Journal of Water Resources Planning and Management, 125(5): 263-271
[118] Jan Seibert, 2001, “On the need for benchmarks in hydrological modeling”, Hydrological Processes, 15: 1063-1064
[119] Jang, J-S R., 1993, “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, IEEE Trans. On Syst. Man and Cyber., 23(3): 665-685
[120] Julien, B., 1994, “An extension to possibilistic linear programming”, Fuzzy Sets and Systems, 64: 195-206
[121] Kelman, J., J. R. Stedinger, L.A. Cooper, E. Hsu, and S.Yuan, 1990, “Sampling stochastic dynamic programming applied to reservoir operation”, Water Resources Research, 26(3): 447-454
[122] Komda, T. and C. Makarand, 2000, “Hydrological forecasting using neural networks”, Journal of Hydrologic Engineering, 5(2): 180-189
[123] Lai, J. S. and F. J. Chang, 2001, “Physical modeling of hydraulic desiltation in Tapu reservoir”, International Journal of Sediment Research, 16(3): 363-379
[124] Liao, H. P., J. P. Su and H. M. Wu, 2001, “An application of ANFIS to modeling of a forecasting system for the demand of teacher human resources”, Journal of Education and Psychology, 24(1): 1-17
[125] Lin, C. L. and H. W. Su, 2000, “Intelligent control theory in guidance and control system design: an overview”, Proceedings of the National Science Council, ROC 24(1): 15-30.
[126] Liu, B. and T. Odanaka, 1999, “Dynamic fuzzy criterion model for reservoir operations and a case study”, Computers and Mathematics with Applications, 37: 65-75.
[127] Maass, Arthur, and Maynard M. Hufschmidt, 1962, “Design of Water-Resources Systems”, Cambridge, MA: Harvard University Press.
[128] Mantawy, A. H., Y. L. Abdel-Magid, S. Z. Selim, 1999, “A new genetic-based tabu search algorithm for unit commitment problem”, Electric Power Systems Research, 49(2): 71-78.
[129] McCulloch, W. S. and Pitts W., 1943, “A logical calculus of the ideas immanent in nervous activity”, Bulletin of Mathematical Biophysics, 5: 115-133.
[130] McKinney, D. and Lin, M., 1994, “Genetic algorithm solution of groundwater management models”, Water Resources Research, 30(6): 1897-1906
[131] Mendel, J. M., 2000, “Uncertainty, fuzzy logic, and signal processing”, Signal Processing. 80(6): 913-933
[132] Michalewicz, Z., 1992, “Genetic Algorithms + Data Structures = Evolution Programs”. Springer Verlag
[133] Munakata, T. and Y. Jani, 1994, “Fuzzy Systems: An Overview”, Communications of the ACM, 37(3): 69-76.
[134] Neelakantan, T. R. and N. V. Pundarikanthan, 2000, “Neural network-based simulation-optimization model for reservoir operation”, Journal of Water Resources Planning and Management , 126(2): 57-64
[135] Negoita, C. V. and M. Sularia, 1976, “On fuzzy programming and tolerances in Planning”, Econom. Comp. Econom. Cybernet. Stud. Res. 1: 3-15.
[136] Nese, A., and H. Tefaruk, 1999, “Five-stage flood routing for gated reservoirs by grouping floods into five different categories according to their return periods”, Hydrological Sciences Journal, 44(2):163-172.
[137] Nie, J., and D. A. Linkens, 1994, “Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network”, International Journal of Control, 60(3): 369-393.
[138] Nie, J., 1997, “Nonlinear time-series forecasting: A fuzzy-neural approach”, Neurocomputing 16, ELSEVIER, pp.63-76
[139] Oliveira, R. and D. P. Loucks, 1997, “Operating rules for multireservoir systems”, Water Resources Research, 33 (4): 839-852
[140] Oonsivilai, A., and M. E. El-Hawary, 1999, “Power system dynamic load modeling using adaptive-network-based fuzzy inference system”, Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Eng., Shaw Conference Center, Edmonton, Alberta, Canada.
[141] Pal, K., R. K. Mudi and N. R. Pal, 2002, “A new scheme for fuzzy rule-based system identification and its application to self-tuning fuzzy controllers”, IEEE transactions on Systems, Man and Cybernetics: Part B, 32(4): 470-481
[142] Parlos, A. G., O. T. Rais and A. F. Atiya, 2000, “Multi-step-ahead prediction using dynamic recurrent neural networks”, Neural Networks, 13: 765-786
[143] Peng C. S. and N. Buras, 2000, “Practical estimation of inflows into multireservoir system”, Journal of Water Resources Planning and Management, 126(5): 331-334
[144] Perera, B. J. C. and Codner G. P., 1998, “Computational improvement for stochastic dynamic programming models of urban water supply reservoirs”, Journal of American Water Resources Association, 34(2): 267-278
[145] Ponnambalam K., F. Karray, and S. J. Mousavi, 2003, “Minimizing variance of reservoir systems operations benefits using soft computing tools”, Fuzzy Sets and Systems, 139: 451-461
[146] Raman, H. and V. Chandramouli, 1996, “Deriving a general operating policy for reservoirs using neural network”, Journal of Water Resources Planning and Management, 122(5): 342-347
[147] Ritzel , B. J., J. W. Eheart and S. Ranjithan, 1994, “Using genetic algorithms to solve a multiple objective groundwater pollution problem”, Water Resources Research, 30(5): 1589-1603
[148] Rumelhart D. E. and McClelland J. L., 1986, “Parallel distributed processing: explorations in the microstructure of cognition”, Vol. 1. Cambridge, MA: MIT Press
[149] Sajikumar, N. and B. S. Thandaveswara, 1999, “A non-linear rainfall-runoff model using an artificial network”, Journal of Hydrology, 216(1): 32-55
[150] Sfetsos, A., 2000, “A comparison of various forecasting techniques applied to mean hourly wind speed time series”, Renewable Energy, 21: 23-35.
[151] Sharif, M. and R. Wardlaw, 2000, “Multireservoir systems optimization using genetic algorithms: Case study”, Journal of Computing in Civil Engineering, 14(4): 255-263
[152] Slowinski, R., 1986, “A multicriteria fuzzy linear programming method for water system development planning”, Fuzzy Sets and Systems, 19: 217-238
[153] Stastry, V.N., R.N. Tiwari and K. S. Sastri, 1993, “Dynamic programming approach to multiple objective control problem having deterministic or fuzzy goals”, Fuzzy Sets and Systems, 57: 195-202
[154] Tanaka, H., T. Okuda, and K. Asai, 1973, “Fuzzy mathematical programming”, Trans. Society of Instrument and Control Eng., 9(5): 607-613
[155] Tanaka, H., T. Okuda, and K. Asai, 1974, “On fuzzy mathematical programming,” Journal of Cybernetics, 3(4): 37-46
[156] Thomas, L.C., T.W. Archibald and K.I.M. McKinnon, 1997, “An aggregate stochastic dynamic programming model of multiple reservoir systems”, Water Resources Research, 33: 333-340
[157] Wang, Q. J., 1991, “The genetic algorithm and its application to calibrating conceptual rainfall-runoff models”, Water Resources Research, 27(9): 2467-2471
[158] Wardlaw, R. and M. Sharif, 1999, “Evaluation of genetic algorithms for optimal reservoir system operation”, Journal of Water Resources Planning and Management, 125(1): 25-33
[159] Wasimi, S. A. and Kitanidis, P. K., 1983, “Real-time forecasting and daily operation of a multireservoir system during floods by linear quadratic gaussian control”, Water Resources Research, 19(6):1511-1522.
[160] Wright, A. H., 1991, “Genetic algorithms for real parameter optimization”, in Foundations of Genetic Algorithms-1. San Mateo, CA: Morgan Kaufman, pp. 205-218
[161] Wu, K. C., 1996, “Fuzzy Interval Control of Mobile Robots”, Computers and Electrical Engineering, 22(3): 211-229
[162] Xu, Z. X. and J. Y. Li, 2002, “Short-term inflow forecasting using an artificial neural network model”, Hydrological processes, 16:2433-2439
[163] Yeh, W., 1985, “Reservoir management and optimization models: a state of the art review”, Water Resources Research, 21(12): 1797-1818
[164] Zadeh, L.A., 1965, “Information and Control”, Fuzzy Sets, 8.
[165] Zadeh L. A., 1973, “Outline of a new approach to the analysis of complex systems and design processes”, IEEE Trans. On Syst. Man and Cyber., SMC-3(1): 28-44
[166] Zhu, M. L. and M.Fujita, 1994, “Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge”, Journal of hydroscience and hydraulic engineering, 12(2): 131-141
[167] Zimmermann, H.-J., 1976, “Description and Optimization of fuzzy Systems”, Int. J. Gen. Systems 2: 209-215
[168] Zimmermann, H.-J, 1978, “Fuzzy programming and liner programming with several objective function”, Fuzzy Sets and Systems, 1: 45-55
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24127-
dc.description.abstract面對台灣地區水資源時空分布不均及日益不足等問題,如何在安全條件下進行水庫操作使其儘可能滿足各標的,以善用水資源並維持其永續經營是當前首要課題。智慧型控制理論主要包含人工智慧、模糊理論、遺傳演算法與類神經網路等技術,模擬人類學習、適應、回想等諸多能力,以解決模式不確定系統、非線性與時變系統等傳統方法不易解決之問題。本研究主要目的是利用智慧型控制理論建立不同時期水庫即時操作系統,期能提供水庫管理單位於操作運轉之參考;首先建立水庫平時操作系統,藉由智慧型理論之彈性及傳統規線操作之專家知識相結合,提出智慧型水庫操作策略,以石門水庫過去四十年的資料作為訓練與測試,相較於傳統規線操作之結果,可有效改善缺水情形集中之嚴重乾旱現象;其次探討反傳遞模糊類神經網路(CFNN)與調適性網路模糊推論系統(ANFIS)於水庫入流量預測之應用,結果顯示ANFIS具備高度學習能力,利用少數規則即可精確預測水庫入流量。再以模糊規劃理論建立一颱洪時期水庫優選模式,利用遺傳演算法搜尋颱洪時期之水庫最佳放水量歷程,以茲作為ANFIS之訓練樣本與標的,而水庫颱洪操作系統需要靠迅速而精確地掌握水庫集水區上游雨量及流量站水文狀況,因此利用ANFIS進行水庫入流量推估,進而在安全與減災的前提下,建立一智慧型水庫颱洪操作模式,於洪水期間進行有效的水庫颱洪操作以充分利用大自然所帶來的資源,並提供操作人員進行相關決策之參考數據。zh_TW
dc.description.abstractResulting from the continuous increase in water demand and uneven water distribution both on time and space, the efforts of pursuing integrated optimal water resource management become critical. Intelligent control is a state-of-the-art technology that resembles the human thinking process in decision making and strategy learning, and it has been well recognized for its outstanding ability in controlling complex systems
In this study, we continue to pursue the novel intelligent control methodology, which includes genetic algorithm (GA), fuzzy theory, and adaptive network-based fuzzy inference system (ANFIS), for efficiently and effectively operating a multi-objective reservoir. First, GA and fuzzy rule base (FRB) are used to extract the knowledge based on the historical inflow data with a design objective function and the traditional rule curve operating strategy, respectively. The ANFIS is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. The results show that the ANFIS models built on different types of knowledge have better performance than the traditional M-5 rule curves in reservoir operation. Second, for the purpose of comparison, the predictive ability of CFNN and ANFIS model are performed by using the inflow data of Shihmen reservoir. The result demonstrate that ANFIS can be applied successfully and provide high accuracy and reliability for reservoir inflow forecasting in the next three hours. Finally, we propose an intelligent operating strategy for real-time reservoir flood operation. The fuzzy programming is implemented to deal with the inherent imprecision and vagueness characteristic of reservoir objectives and constraints; GA is then to search the optimal solutions; forecasted hourly inflow by ANFIS and observed hourly inflow are used to simulate the model performances, respectively; ANFIS is used for estimating the optimal flood operation. The results obtained in this study are valuable information for the flood mitigation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:16:33Z (GMT). No. of bitstreams: 1
ntu-95-F89622006-1.pdf: 2965303 bytes, checksum: 941973050374d8042849017734b0709f (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘 要 2
Abstract 3
目 錄 5
圖目錄 8
表目錄 11
壹、緒論 12
1-1 研究緣起 12
1-2 研究目的 13
1-3 水庫操作概況 14
1-4 章節架構 15
貳、文獻回顧 19
2-1水庫操作 19
2-1.1模擬法 19
2-1.2優選法 20
2-2模糊理論 20
2-2.1模糊規劃 21
2-2.2模糊推論系統 23
2-3遺傳演算法 24
2-4類神經網路 25
2-4.1調適性網路模糊推論系統 27
2-4.2反傳遞模糊類神經網路 27
參、理論概述 29
3-1水庫操作模式發展 29
3-2 模糊理論 31
3-2.1模糊規劃理論 35
3-2.2模糊推論系統 40
3-3 遺傳演算法 44
3-3.1演算流程 44
3-3.2參數設定 50
3-3.3限制型遺傳演算法 51
3-4類神經網路 52
3-4.1 調適性網路模糊推論系統 54
3-4.2 反傳遞模糊類神經網路 61
肆、智慧型水庫平時操作系統 66
4-1 研究區域現況概述 67
4-1.1水庫集水區概況 67
4-1.2水庫標的說明 69
4-1.3水庫操作規線 70
4-1.4水庫防洪作業 74
4-1.5水文資料 77
4-2建立優選模式 81
4-2.1遺傳演算法優選過程 83
4-3 水庫操作規線與模糊規則庫之轉換 85
4-4智慧型水庫平時操作系統之建立 87
伍、智慧型水庫颱洪操作系統 97
5-1水庫入流量預測模式 98
5-1.1資料來源及選取 99
5-1.2 CFNN預測水庫入流量 107
5-1.3 ANFIS預測水庫入流量 118
5-2水庫颱洪操作之優選模式建立 126
5-2.1 建立優選模式 126
5-2.2 計算各場次滿意度 132
5-2.3 以遺傳演算法優選短延時水庫操作歷程 133
5-3智慧型水庫颱洪操作系統之建立 136
陸、結論與建議 148
6-1 結論 148
6-2 建議 151
參考文獻 153
dc.language.isozh-TW
dc.title調適性網路模糊推論系統於水庫操作之研究zh_TW
dc.titleA Study of Adaptive Network-based Fuzzy Inference System for Reservoir Operationen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃文政,張麗秋,周瑞仁,蘇明道
dc.subject.keyword智慧型控制理論,水庫操作,遺傳演算法,模糊規劃,調適性網路模糊推論系統,zh_TW
dc.subject.keywordintelligent control theory,reservoir operation,genetic algorithm,fuzzy programming,adaptive network-based fuzzy inference system,en
dc.relation.page167
dc.rights.note未授權
dc.date.accepted2006-01-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved