請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24125
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱奕鵬 | |
dc.contributor.author | Sheng-Jie Lin | en |
dc.contributor.author | 林聖傑 | zh_TW |
dc.date.accessioned | 2021-06-08T05:16:30Z | - |
dc.date.copyright | 2006-02-07 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-01-25 | |
dc.identifier.citation | [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phy. Rev. Lett., vol. 58, pp. 2059-2062,1987.
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., vol. 58, pp. 2486-2489, 1987. [3] H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss,D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals:Positive role of the substrate,” Appl. Phys. Lett., vol. 76, pp. 532-534, 2000. [4] M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett., vol. 77, pp. 1937-1939, 2000. [5] S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B, vol. 18, pp. 162-165, 2001. [6] S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Direct measurement of the quality factor in a two-dimensional photoniccrystal microcavity,” Opt. Lett., vol. 26, pp. 1903-1905, 2001. [7] M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka,“Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide,” J. Lightwave Technol., vol. 20, pp. 873-878, 2002. [8] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phy. Rev. Lett., vol. 77, pp. 3787-3790, 1996. [9] T. Baba, “Photonic Crystals and Microdisk Cavities Based on GaInAsP-InP System,” IEEE J. Sel. Top. Quantum Electron, vol.3, pp. 808-830, 1997. [10] D. N. Christodoulides and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett., vol. 27, pp. 568-570, 2002. [11] C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: A numerical study,” Phys. Rev. A, vol. 42,pp. 2858-2869, 1990. [12] G. P. Agrawal, Nonlinear Fiber Optics,, 3rd ed., San Diego, CA:Academic, 2001. [13] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, 1966. [14] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Boston: Artech House, 2000. [15] M. Fujii, M. Tahara, I. Sakagami, W. Freude, S. Member, and P. Russer, “High-Order FDTD and Auxiliary Differential Equation Formulation of Optical Pulse Propagation in 2-D Kerr and Raman Nonlinear Dispersive Media,” IEEE J. Quantum Electron., vol. 40, pp. 175-182, 2004. [16] D. Scrymgeour, N. Malkova, S. Kim, and V. Gopalan, “Electro-optic control of the superprism effect in photonic crystals,” Appl. Phys. Lett., vol. 82, pp. 3176-3178, 2003. [17] K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spec-tra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett., vol. 75, pp. 932-934, 1999. [18] A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides,” Appl. Phys. Lett., vol. 83, pp. 851-853, 2003. [19] L. Brzozowski, V. Sukhovatkin, E. H. Sargent, A. J. SpringThorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron., vol. 39, pp. 924-930, 2003. [20] M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy. Rev. E, vol. 66, pp. 55601-55604, 2002. [21] R. Stoffer, Y. S. Kivshar, “Optical bistability in a nonlinear photonic crystal waveguide notch filter,” in Proc. Symp. IEEE/LEOS Benelux, pp. 247-250, 2000. [22] M. F. Yanik, S. Fan, M. Soljacic and J. D. Joannopoulos, “Alloptical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett., vol. 28, pp. 2506-2508, 2003. [23] M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photoniccrystal nanocavities,” Opt. Express, vol. 13, pp. 2678-2687, 2005. [24] Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E, vol. 62, pp. 7389-7404, 2000. [25] Z. Zhu, and T. G. Brown, “Full vectorial finite difference analysis of microstructured optical fibers,” Opt. Express, vol. 10, pp. 853-864, 2002. [26] S. Guo, F. Wu, S. Albin, and R. S. Rogowski, “Photonic band gap analysis using finitedifference frequency-domain method,” Opt. Express, vol. 12, pp. 1741-1746, 2004. [27] M. Bahl, N.-C. Panoiu, and R. M. Osgood, Jr., “Nonlinear optical effects in a two-dimensional photonic crystal containing onedimensional Kerr defects,” Phy. Rev. E, vol. 67, pp. 56604-56612, 2003. [28] M. F. Yanik, S. Fana, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett., vol. 83, pp. 2739-2741, 2003. [29] H. A. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs,N.J.: Prentice-Hall, 1984. [30] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phy. Rev. Lett., vol. 67, pp. 2295-2298, 1991. [31] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas,“Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun., vol. 89, pp. 413-416, 1994. [32] S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic-crystal slabs,” Phys. Rev. B, vol. 60, pp. 5751-5780, 1999. [33] A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phy. Rev. B, vol. 62, pp. 4488-4491, 2000. [34] M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu,“Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express, vol. 12, pp. 1551-1561, 2004. [35] S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos,“Multipole-cancellation mechanism for high-Q cavities in the ab-sence of a complete photonic band gap,” Appl. Phys. Lett., vol. 78, pp. 3388-3390, 2001. [36] H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett., vol. 80, pp. 3883-3885, 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24125 | - |
dc.description.abstract | 在這篇論文,我們使用了有限差分時域法討論了非線性光子晶體共振腔的穿透率變化。光子晶體的特性與折射率有關,改變光子晶體共振腔的折射率將改變共振頻率。另一方面,在非線性效應中,電場強度可以改變物質的介電係數,所以只要從光子晶體外面輸入不同功率的電磁波,就可以改變光子晶體的共振腔頻率。由於光子晶體共振腔能夠蓄積電磁能,將使所需要入射功率大大減少。在波導和共振腔直接耦合方面,入射頻率越接近共振頻率,穿透率越大。
入射一個電磁波,其頻率低於非線性效應不顯著時候的共振頻率,之後改變入射功率使共振頻率下降,結果顯示二維或三維平板結構輸出功率都具有雙穩態。在共振腔置於波導旁的結構中,在接近共振頻率時,穿透幾乎是零。經由同樣的方法模擬二維結構,也有雙穩態,並且有極高的輸出對比。更近一步的,利用不同功率的控制光,改變共振腔的特性,控制使特定頻率的信號光穿透與否,達到了由光控制光的效果,實現光開關器的作用。 | zh_TW |
dc.description.abstract | In the thesis, we study the power transmission in the nonlinear photonic crystal cavities with the finite-difference time-domain method.The refractive index of photonic crystal cavities changes with the field intensity, which results in the change of resonant frequency.Therefore, we can launch different input power to control the resonant frequency.Because the field intensity can be very high in the photonic crystal cavities, the incident power level can be lowered dramatically. In the direct-coupled resonator geometry, the transmission increases as the frequency gets closer to the resonant frequency.With the input frequency lower than the resonant one in a linear limit and the input power varied, the result exhibits optical bistability of the transmission in two-dimensional structures and three-dimensional slab structures.In the side-coupled resonator geometry, the input wave is completely reflected at the resonant frequency.Using the similar procedure, the result exhibits optical bistability and high contrast in the power transmission in two-dimensional structures.Furthermore, using a control input changes the resonant frequency of the signal input,then the transmission of the signal input can be controlled by the control input.This provides an all-optical switch. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:16:30Z (GMT). No. of bitstreams: 1 ntu-95-R92941049-1.pdf: 2055410 bytes, checksum: b6a4d5bf909e7b7c2eea673985487190 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 1 導論7
1.1 光子晶體簡介7 1.2 非線性效應簡介8 2 有限差分時域法(FDTD)11 2.1 分析非線性的有限差分時域法11 2.2 模擬實例:二維光子晶體15 3 非線性共振腔20 3.1 光子晶體共振腔20 3.2 雙穩態曲線22 3.3 三維平板波導26 4 光開關器43 4.1 光開關器43 5 結論54 6 參考文獻56 | |
dc.language.iso | zh-TW | |
dc.title | 以有限差分時域法分析非線性光子晶體 | zh_TW |
dc.title | Finite-Difference Time-Domain Modeling of Nonlinear Photonic Crystals | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江衍偉,王子建 | |
dc.subject.keyword | 光子晶體,共振腔,非線性效應,雙穩態,光開關, | zh_TW |
dc.subject.keyword | photonic crystals,cavity,nonlinear effect,bistability,optical switch, | en |
dc.relation.page | 62 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2006-01-25 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。