Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24042
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏文
dc.contributor.authorChang-Chun Wangen
dc.contributor.author王昶鈞zh_TW
dc.date.accessioned2021-06-08T05:14:42Z-
dc.date.copyright2011-08-04
dc.date.issued2011
dc.date.submitted2011-08-01
dc.identifier.citationAkiyama, Y., Hosoya, T., Poole, A. M., and Hotta, Y. (1996). The gcm-motif: a novel
DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci U S A
93(25), 14912-6.
Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J. W., and Elledge, S. J.
(1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery
through a novel motif, the F-box. Cell 86(2), 263-74.
Bennett, E. J., Rush, J., Gygi, S. P., and Harper, J. W. (2010). Dynamics of cullin-RING
ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143(6),
951-65.
Bornstein, G., Ganoth, D., and Hershko, A. (2006). Regulation of neddylation and
deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate.
Proc Natl Acad Sci U S A 103(31), 11515-20.
Burack, W. R., and Shaw, A. S. (2000). Signal transduction: hanging on a scaffold. Curr
Opin Cell Biol 12(2), 211-6.
Cenciarelli, C., Chiaur, D. S., Guardavaccaro, D., Parks, W., Vidal, M., and Pagano, M.
(1999). Identification of a family of human F-box proteins. Curr Biol 9(20), 1177-9.
Chang, B. Y., Conroy, K. B., Machleder, E. M., and Cartwright, C. A. (1998). RACK1, a
receptor for activated C kinase and a homolog of the beta subunit of G proteins,
inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol
18(6), 3245-56.
Chang, C. W., Chuang, H. C., Yu, C., Yao, T. P., and Chen, H. (2005). Stimulation of
GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to
CBP-mediated acetylation of GCMa. Mol Cell Biol 25(19), 8401-14.
Chen, S., Spiegelberg, B. D., Lin, F., Dell, E. J., and Hamm, H. E. (2004). Interaction of
Gbetagamma with RACK1 and other WD40 repeat proteins. J Mol Cell Cardiol 37(2),
399-406.
Clague, M. J., and Urbe, S. (2010). Ubiquitin: same molecule, different degradation
pathways. Cell 143(5), 682-5.
Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R., and Hunter, T. (1982). Similar
effects of platelet-derived growth factor and epidermal growth factor on the
phosphorylation of tyrosine in cellular proteins. Cell 31(1), 263-73.
Cross, J. C., Anson-Cartwright, L., and Scott, I. C. (2002). Transcription factors
underlying the development and endocrine functions of the placenta. Recent Prog
Horm Res 57, 221-34.
Dorn, G. W., 2nd, and Mochly-Rosen, D. (2002). Intracellular transport mechanisms of
signal transducers. Annu Rev Physiol 64, 407-29.
Enkhbayar, P., Kamiya, M., Osaki, M., Matsumoto, T., and Matsushima, N. (2004).
Structural principles of leucine-rich repeat (LRR) proteins. Proteins 54(3), 394-403.
Guillemot, F., Billault, A., and Auffray, C. (1989). Physical linkage of a guanine
nucleotide-binding protein-related gene to the chicken major histocompatibility
complex. Proc Natl Acad Sci U S A 86(12), 4594-8.
Haas, A. L., Warms, J. V., Hershko, A., and Rose, I. A. (1982). Ubiquitin-activating
enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257(5),
2543-8.
Hashemolhosseini, S., and Wegner, M. (2004). Impacts of a new transcription factor
family: mammalian GCM proteins in health and disease. J Cell Biol 166(6), 765-8.
He, X., Wang, J., Messing, E. M., and Wu, G. (2011). Regulation of receptor for
activated C kinase 1 protein by the von Hippel-Lindau tumor suppressor in
IGF-I-induced renal carcinoma cell invasiveness. Oncogene 30(5), 535-47.
Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U., and Wolf, D. H. (1997). The
active sites of the eukaryotic 20 S proteasome and their involvement in subunit
precursor processing. J Biol Chem 272(40), 25200-9.
Ho, M. S., Ou, C., Chan, Y. R., Chien, C. T., and Pi, H. (2008). The utility F-box for
protein destruction. Cell Mol Life Sci 65(13), 1977-2000.
Kobe, B., and Kajava, A. V. (2001). The leucine-rich repeat as a protein recognition
motif.Curr Opin Struct Biol 11(6), 725-32.
Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L., and Pickart, C. M. (2002). A
proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature
416(6882), 763-7.
Liang, C. Y., Wang, L. J., Chen, C. P., Chen, L. F., Chen, Y. H., and Chen, H. (2010).
GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in
human placenta. Biol Reprod 83(3), 387-95.
Liliental, J., and Chang, D. D. (1998). Rack1, a receptor for activated protein kinase C,
interacts with integrin beta subunit. J Biol Chem 273(4), 2379-83.
Liu, Y. V., Baek, J. H., Zhang, H., Diez, R., Cole, R. N., and Semenza, G. L. (2007).
RACK1 competes with HSP90 for binding to HIF-1alpha and is required for
O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell
25(2), 207-17.
Locasale, J. W., Shaw, A. S., and Chakraborty, A. K. (2007). Scaffold proteins confer
diverse regulatory properties to protein kinase cascades. Proc Natl Acad Sci U S A
104(33), 13307-12.
McCahill, A., Warwicker, J., Bolger, G. B., Houslay, M. D., and Yarwood, S. J. (2002).
The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol
Pharmacol 62(6), 1261-73.
Neer, E. J., Schmidt, C. J., Nambudripad, R., and Smith, T. F. (1994). The ancient
regulatory-protein family of WD-repeat proteins. Nature 371(6495), 297-300.
Petroski, M. D., and Deshaies, R. J. (2005). Function and regulation of cullin-RING
ubiquitin ligases. Nat Rev Mol Cell Biol 6(1), 9-20.
Rawn, S. M., and Cross, J. C. (2008). The evolution, regulation, and function of
placenta-specific genes. Annu Rev Cell Dev Biol 24, 159-81.

Ron, D., Chen, C. H., Caldwell, J., Jamieson, L., Orr, E., and Mochly-Rosen, D. (1994).
Cloning of an intracellular receptor for protein kinase C: a homolog of the beta
subunit of G proteins. Proc Natl Acad Sci U S A 91(3), 839-43.
Ron, D., Jiang, Z., Yao, L., Vagts, A., Diamond, I., and Gordon, A. (1999). Coordinated
movement of RACK1 with activated betaIIPKC. J Biol Chem 274(38), 27039-46.
Ron, D., Vagts, A. J., Dohrman, D. P., Yaka, R., Jiang, Z., Yao, L., Crabbe, J., Grisel, J.
E., and Diamond, I. (2000). Uncoupling of betaIIPKC from its targeting protein RACK1
in response to ethanol in cultured cells and mouse brain. FASEB J 14(14), 2303-14.
Sapir, A., Avinoam, O., Podbilewicz, B., and Chernomordik, L. V. (2008). Viral and
developmental cell fusion mechanisms: conservation and divergence. Dev Cell 14(1),
11-21.
Shaw, A. S., and Filbert, E. L. (2009). Scaffold proteins and immune-cell signalling. Nat
Rev Immunol 9(1), 47-56.
Skaar, J. R., Pagan, J. K., and Pagano, M. (2009). SnapShot: F box proteins I. Cell
137(6), 1160-1160 e1.
Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J., and Harper, J. W. (1997). F-box
proteins are receptors that recruit phosphorylated substrates to the SCF
ubiquitin-ligase complex. Cell 91(2), 209-19.
Smith, D. M., Chang, S. C., Park, S., Finley, D., Cheng, Y., and Goldberg, A. L. (2007).
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha
ring opens the gate for substrate entry. Mol Cell 27(5), 731-44.
Smith, D. M., Kafri, G., Cheng, Y., Ng, D., Walz, T., and Goldberg, A. L. (2005). ATP
binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate
opening, and translocation of unfolded proteins. Mol Cell 20(5), 687-98.
Smith, T. F., Gaitatzes, C., Saxena, K., and Neer, E. J. (1999). The WD repeat: a
common architecture for diverse functions. Trends Biochem Sci 24(5), 181-5.

Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E., and Sigler, P. B. (1996). Crystal
structure of a G-protein beta gamma dimer at 2.1A resolution. Nature 379(6563),
369-74.
Thrower, J. S., Hoffman, L., Rechsteiner, M., and Pickart, C. M. (2000). Recognition of
the polyubiquitin proteolytic signal. EMBO J 19(1), 94-102.
Voges, D., Zwickl, P., and Baumeister, W. (1999). The 26S proteasome: a molecular
machine designed for controlled proteolysis. Annu Rev Biochem 68, 1015-68.
Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G.,
and Sprang, S. R. (1995). The structure of the G protein heterotrimer Gi alpha 1 beta
1 gamma 2. Cell 83(6), 1047-58.
Wegner, M., and Riethmacher, D. (2001). Chronicles of a switch hunt: gcm genes in
development. Trends Genet 17(5), 286-90.
Weissman, A. M. (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell
Biol 2(3), 169-78.
Yamada, K., Ogawa, H., Honda, S., Harada, N., and Okazaki, T. (1999). A GCM motif
protein is involved in placenta-specific expression of human aromatase gene. J Biol
Chem 274(45), 32279-86.
Yang, C. S., Yu, C., Chuang, H. C., Chang, C. W., Chang, G. D., Yao, T. P., and Chen,
H. (2005). FBW2 targets GCMa to the ubiquitin-proteasome degradation system. J Biol
Chem 280(11), 10083-90.
Yarwood, S. J., Steele, M. R., Scotland, G., Houslay, M. D., and Bolger, G. B. (1999).
The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific
phosphodiesterase PDE4D5 isoform. J Biol Chem 274(21), 14909-17.
Yu, C., Shen, K., Lin, M., Chen, P., Lin, C., Chang, G. D., and Chen, H. (2002). GCMa
regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 277(51), 50062-8.


Zhao, Y., Agarwal, V. R., Mendelson, C. R., and Simpson, E. R. (1996). Estrogen
biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading
to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137(12),
5739-42.
Zhou, P., and Howley, P. M. (1998). Ubiquitination and degradation of the substrate
recognition subunits of SCF ubiquitin-protein ligases. Mol Cell 2(5), 571-80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24042-
dc.description.abstractFBW2 contains an F-box motif and is a substrate recognition subunit of SCF E3 ligase complex. The WD40 domain in FBW2 binds the substrate for ubiquitination and proteasomeal degradation. Although the SCF E3 ligase activity may be regulated by post-translational modification such as neddylation of its scaffold protein Cullin, it is possible that regulation of FBW2 activity may also affect the SCFFBW2 E3 ligase activity. In the present study, we used tandem affinity purification combined with LC/MS/MS to identify RACK1 (receptor for activated C-kinase 1) as an FBW2-associated protein that regulates FBW2-mediated ubiquitination.
RACK1 is a scaffold protein, which contains seven WD40 repeats, and interacts with many proteins in multiple signal transduction pathways. In this study, we found RACK1 interacts with FBW2 in vivo and in vitro. By domain mapping analysis and in vitro competition experiments, we found that RACK1 interacts with the WD40 domain of FBW2 to block the interaction between FBW2 and its substrate GCM1. Accordingly, an in vivo ubiquitination assay showed that ubiquitination of exogenous GCM1 is enhanced in 293T cells when RACK1 is knocked down. Moreover, the protein level of endogenous GCM1 is decreased in RACK1-knockdown placental BeWo cells. In line with these observations, overexpression of RACK1 increases GCM1-mediated transcriptional activation. Overall, our results indicate that RACK1 may repress FBW2 activity by protecting its substrate from degradation and suggest a new role of RACK1 in regulation of E3 ligase activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:14:42Z (GMT). No. of bitstreams: 1
ntu-100-R98b46022-1.pdf: 4067140 bytes, checksum: 5e4e55ba0ec38caea9d9b2ca5908dc79 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄………………………………………………………………………………...…… I
中文摘要……………………………………………………………………………… III
英文摘要…………………………………………………………………………….....IV
第一章 緒論
1.1 泛素-蛋白酶體系統……..................................................................... 1
1.2 FBW2蛋白….........................................................................................3
1.3 RACK1鷹架式結構蛋白…………………………………...................6
1.4 研究動機…………………………………...………………………….8
第二章 材料及方法
2.1 串聯式親合性純化和質譜儀分析........................................................9
2.2 重組質體的構築……………………………………………………..10
2.3 重組蛋白在人類細胞的表現………………………….….................13
2.4 細胞蛋白萃取及處理………………………………………………. 14
2.5 SDS聚丙烯醯胺凝膠電泳及西方墨點法………………………….. 15
2.6 共同免疫沉澱法…………………………………………................. 16
2.7 活體外交互作用分析………………………………………………. 16
2.8 免疫螢光染色…………..................................................................... 17
2.9 活體內泛素化作用分析………………………………..................... 18
2.10 Luciferase螢光報告基因活性檢測…………………………………18
2.11 RNA干擾和慢病毒感染…………………………………………….19
第三章 實驗結果
3.1 鑑定RACK1為與FBW2互相作用的蛋白…………………...…….. 20
3.2 RACK1和FBW2的交互作用……………………………...….. 20
3.3 RACK1結合FBW2的WD40結構區域…………………………...….23
3.4 RACK1降低FBW2和其受質蛋白間的結合……………………. …24
3.5 RACK1對細胞內GCM1汎素化的影響……………………….. ...…25
3.6 RACK1能相對提高GCM1的轉錄活性……………......... ……...….26
3.7 胎盤細胞中RACK1對GCM1蛋白穩定度的影響……….......... …...27
第四章 討論與總結
4.1 RACK1影響SCFFBW2的功能和活性…………………………………28
4.2 RACK1在胎盤細胞中的生理意義……………………………...…...29
第五章 圖表…………………………………………………………………………...31
第六章 參考文獻…………………………………………………………….. …........46
dc.language.isozh-TW
dc.subjectWD40 結構區域zh_TW
dc.subject鷹架式結構蛋白zh_TW
dc.subjectFBW2zh_TW
dc.subjectRACK1zh_TW
dc.subjectSCF 複合體zh_TW
dc.subjectscaffold proteinen
dc.subjectFBW2en
dc.subjectRACK1en
dc.subjectSCF complexen
dc.subjectWD40 domainen
dc.title探討RACK1鷹架式結構蛋白對FBW2活性的調控zh_TW
dc.titleRegulation of FBW2 Activity by RACK1 Scaffold Proteinen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明亭,張震東,張功耀,張茂山
dc.subject.keywordFBW2,RACK1,SCF 複合體,WD40 結構區域,鷹架式結構蛋白,zh_TW
dc.subject.keywordFBW2,RACK1,SCF complex,WD40 domain,scaffold protein,en
dc.relation.page51
dc.rights.note未授權
dc.date.accepted2011-08-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved