Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24012Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳錫侃 | |
| dc.contributor.author | Han-Yun Chang | en |
| dc.contributor.author | 張瀚云 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:14:07Z | - |
| dc.date.copyright | 2006-07-11 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-07 | |
| dc.identifier.citation | 1. 謝世峰,台大材料所博士論文(1997).
2. 羅ㄧ中,台大材料所博士論文(1992). 3. S.K. Wu and C.M. Wayman, Metallography, 20 (1987) 359. 4. N.M. Matreeva, Yu.K. Kovneristyi, A.S. Savinov, V.P. Sivokha and V. N. Khachin , J. de Phys., C4 (1982) 249. 5. E.K. Eckelmeyer, Scripta Metall., 10 (1976) 667. 6. T. Honma, M. Matsumoto, Y. Shugo and I. Yamazaki, Proc. 4th Int’l. Conf. on Ti, 1980, pp.1455. 7. R. Wasilewski, Shape Memory Effects in Alloys, (J. Perkins, ed.), Plenum Press, New York, 1975, pp.245. 8. P.M. Ossi and F. Rossitto, J. Phys., 43 (1982) C4-127 9. P.M. Ossi, Mater. Sci. Eng., L5 (1986) 77. 10. R.H. Bricknell, K.N. Melton and O. Mercier, Metall. Trans. A,10 (1979) 693. 11. L.C. Chang and T.A. Read, Trans. AIME., 189 (1951) 47. 12. H. Kessler and W. Pitsch, Acta Met., 15 (1967) 401. 13. T. Saburi, S. Nenno and C.M. Wayman, ICOMAT-79 (1979) 619. 14. A. Nagasawa, K. Enami, Y. Ishino, Y. Abe and S. Nenno, Scripta Metall., 8 (1974) 1055. 15. T. Saburi and S. Nenno, Scripta Metall., 8 (1974) 1363. 16. T.A. Schroder and C.M. Wayman, Scripta Metall., 11 (1977) 225. 17. K. Enami, A. Nagasawa and S. Nenno, Scripta Metall., 9 (1975) 941. 18. L. Delaey and J. Thienel, in:Shape Memory Effects in Alloys, (J. 128 Perkins, ed.), Plenum Press, New York, 1975, pp.341. 19. T. Saburi and S. Nenno, in:Proc. Int’l. Conf. on Solid to Solid Phase Transformations, ASM, Metals Park, Ohio, 1982, pp.1455. 20. M. Nishida and T. Honma, Scripta Metall., 18 (1984) 1293. 21. M. Nishida and T. Honma, Scripta Metall., 18 (1984) 1299. 22. M. Nishida and C.M. Wayman, Scripta Metall., 18 (1984) 1389. 23. K. Otsuka and K.Shimizu, Int’l. Met. Rev, 31 (1986) 93. 24. M. Nishida and T.Honma, ICOMAT-82, J. de physique(Supp), 43 (1982) C4-225. 25. T. Honma, Proc. Int’l Symp. on Shape Memory Alloys, SMA 86 Guilin, China, 1986, pp.83. 26. T. Honma, ICOMAT-86 (1986) 709. 27. K. Otsuka and K. Shimizu, Metals Forum, 4 (1981) 142. 28. K. Otsuka and C.M. Wayman, in: Reviews on the Deformation Behavior of Materials, (P. Feltham ed.), Israel, 1977, pp.81. 29. K. Otsuka, in: Proc. Int’l. Conf. on Solid to Solid Phase Transformations, TMS-AIME Pittsburgh, PA. (USA), 1981, pp.1267. 30. K. Otsuka and X. Ren, Intermetallics, 7 (1999) 511. 31. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Editors, Binary Alloy Phase Diagrams, 2nd ed., Vol. 3. Ohio, ASM International, 1990, pp. 2875. 32. C. M. Jackson, H. J. wagner and R. J. Wasilewski, NASA-SP 5110, 1972. 33. K. Ostuka, S. Sawamura and K. Shimizu, Phys. Stat. Sol., 5 (1971) 457. 129 34. O. Matsumoto, S. Miyzaaki, K. Ostuka and H. Tamura, Acta Mater., 35 (1987) 2137. 35. K.M. Knowls and K.A. Smith, Acta Mater., 29 (1981) 101. 36. D.P. Dautovich and G.R. Purdy, Can. Metall., 6 (1972) 115. 37. D. Bradley, J. Acoust, Soc. Am., 37 (1965) 700. 38. C.M. Wayman and I. Cornelis, Scripta Metall., 6 (1972) 115. 39. H.C. Ling and R.Kaplow, Met. Trans. A, 11 (1980) 77. 40. D.P. Dautovich and G.R. Purdy, Can. Metal. Quart., 4 (1965) 129. 41. F.E. Wang, B.F. Desavage and W.I. Buehler, J. Appl. Phys., 39 (1968) 2166. 42. G.D. Sandrock, A.J. Perkin and R.F. Hechemann, Met. Trans. A, 2 (1971) 2769. 43. O. Mercier and K.N. Melten, Acta Met., 27 (1979) 1467. 44. 林凱南,台大材料所碩士論文(2005). 45. H.C. Ling and R. Kaplow, Met. Trans. A, 12 (1981) 2101. 46. E. Goo and R. Sinclair, Acta Metall., 33 (1985) 1717. 47. S.K. Wu and H.C. Lin, Scripta Metall., 25 (1991) 1529. 48. C.M. Hwang, M. Meichle, M.B. Salamon and C.M. Wayman, Phil. Mag.A, 47 (1983) 31. 49. K.H. Eckelmeyer, Scripta Mater., 10 (1076) 677. 50. J.E. Hanlon, S.R. Butler and R.J. Wasilewski, Trans. Metall. Soc. AIME, 239 (1967) 1323. 51. T. Saburi, T. Tatsumi and S. Nenno, J. de Physique (Supp.) 43 (1982) C4-261. 52. T. Tadaki, Y. Nakata and K. Shimizu, Trans. JIM., 28 (1987) 883. 130 53. S. Miyazaki, Y. Igo and K. Otsuka, Acta Met., 34 (1986) 275. 54. M. Nishida and C.M. Wayman, Metallography, 21 (1988) 275. 55. G. Airoldi, G. Bellini and C.D. Franceso, J. Phys. F, 14 (1984) 1983. 56. H.S. Lin, S.K. Wu, T.S. Chou and H.P. Kuo, Acta Metall. Mater., 39 (1991) 2069. 57. T. Saburi, Shape Memory Materials, Edited by K. Otsuka and C.M. Wayman, Cambridge University Press, 1998, pp.58. 58. C.M. Wayman, Proc. ICOMAT-89 (1989) 519. 59. 黃兵民,哈爾濱工業大學博士論文,1997. 60. C.S. Zhang, Y.Q. Wang, J.X. Cheng and L.C. Zhao, Proc. First Int’l Conf. On Shape Memory and Superelastic Technologies, California, 1994, pp.383. 61. 黃兵民,蔡傳,趙連城,宇航材料工藝,27(5) (1997) 24. 62. T. Saburi, S. Nenno, Proc. Int’l. Conf. on Solid to Solid Phase Transformations, Pittsburgh, 1981, pp.1455. 63. T. Saburi, M. Yoshida and S. Nenno, Scripta. Metall., 18 (1984) 363. 64. S. Miyazaki, S. Kimura, K. Otsuka and Y. Suzuki, Scripta. Metall., 18 (1984) 833. 65. T. Saburi, Proc. MRS Int’l. Mtg. on Adv. Mater., Tokyo, Vol. 9 (Shape Memory Mater.), 1989, pp.77. 66. T. Tadaki and C.M. Wayman, Scripta Metall., 14 (1980) 911. 67. Y.F. Zheng, B. M. Huang, J. X. Zhang and L.C. Zhao, Mater. Sci. and Eng. A, 279 (2000) 25. 68. V.N. Khachi, N.M. Matveeva, V.P. Sivokha, D.B. Chernov and Yu. K. Koveristyi, Translated from Dokl. Akad. SSSR, 167 (1981) 257. 131 69. N.M. Matveeva, Yu. K. Koveristyi, A.S. Szvinov, V.P. Sivokha and V.N. Khachi, J. de Physique, 43 (1982) C4-249. 70. A.I. lotokov, V.N. Grishkov and V.V. Fadin, Phys. Stat. Soc., 70a (1982) 513. 71. V.P. Sivokha, A.S Savvvinov, V.P. Vornin and K. Koveristyi, Phys. Met. Metal., 56 (1983) 112. 72. H.C. Dondersloot and J.H.N. Van Vuht, J. Less Comm. Met., 20 (1970) 83. 73. S.M. Tuominen and R.J. Biermann, J. Metal, Feb (1988) 32. 74. H.C. Yi and J.J. Moore, ICOMAT’89, Mater. Sci. Forum, (1990) 735. 75. J.J. Moore and H.C. Yi, ibid (1990) 637. 76. H.C. Yi and J.J. Moore, J. Mater., Sci., Lett., 8 (1879) 1182. 77. H.C. Yi and J.J. Moore, Scripta Metall, 22 (1988) 1889. 78. Y. Xu, S. Shimizu, Y. Suzuki, K. Otsuka, T. Ueki and K. Mitose, Acta Mater., 45 (1997) 1503. 79. Y. Kawaguchi, K. Katsube, M. Murahashi and Y. Yamada, Wire J. Inte’l, 121 (1991) 53. 80. S. Saito, T. Wachi and S. Hanada, Mater. Sci. Eng. A, 161 (1993) 91. 81. 相場滿等, 日本金屬學會會報, 31 (6) (1992) 541. 82. I. Koj, Proc. IEEE Micro Electro Mechanical System, 1994, pp355. 83. Y.S. Zhang, Acta Metall. Sinica. B, 6 (1993) 263. 84. Katsutoshi and Y. Masaaski, Proc. IEEE Micro Electro Mechanical System, 1990, pp.217. 85. J.C. Hey, and A.P. Jardine, Mater. Sci. Eng. A, 188 (1994) 291. 86. P. Filip and K. Mazanec, Mater. Sci. Eng. A, 174 (1994) L41. 132 87. H.C. Lin and S.K. Wu, Acta Metall., 42 (1994) 1623. 88. H.C. Lin and S.K. Wu, Metall. Trans. A, 24 (1993) 293. 89. D.Y. Li, X.F. Wu and T. Ko, Acta Metall. Mater., 38 (1990) 19. 90. M.T. Yeh, H.P. Kao and S.E. Hsu, Unpublished research, 中山科學 院, ROC. 91. 鈴木雄一, 日本金屬學會會報, 24 (1) (1985) 41. 92. C.M. Jackson, H.J. Wanger and R.J. Wasilewski, “55-NITIONL Report”, NASA-SP5110, 1972. 93. A.G. Rozner and W.J. Buehler, Low Temperature Deformation of the TiNi Intermetallic Compound, Rept, NOLTR.66~38, U.S. Naval Ordnance Laboratry, Mar, 1, 1996. 94. 鈴木雄一著; 形狀記憶合金發展現況(林於隆博士譯). 95. 佐分利敏雄, 捻也宗次, 西本泰憲, 錢谷 誠, 鐵和鋼, 6 (1986) 37. 96. 本橋嘉信, 星屋泰二, 岡本芳三, 大森宮次郎, 日本金屬協會誌, 55 (2) (1991) 132. 97. J.S. Madsen and A.P. Jardine, Scripta Metall. Mater., 30 (1994) 1189. 98. 林新智,台大材料所博士論文(1992). 99. M. Nishida, C.M. Wayman and T. Honma, Metall. Trans. A, 17 (1986) 1505. 100. S. Shirnizu, Ya Xu, E. Okunishi, S. Tanaka, K. Otsuka and K. Mitose, Mater. Lett., 34 (1998) 23. 101. Qingchao Tian and Jiansheng Wu, Intermetallics, 10 (2002) 675. 133 102. X.L. Meng, W. Cai, K.T. Lau, L.C. Zhao and L.M. Zhou, Intermetallics, 13 (2005) 197. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24012 | - |
| dc.description.abstract | 本研究主要是在Ti50Ni50-xPdx(x:20 ~ 30 at%)合金系統中添加Cu
取代Ni 後,觀察成分之改變對其相變態溫度、相變態潛熱之影響。並 於室溫冷軋延,再經退火等製程,觀察退火對Ti50(Ni, Cu)50-xPdx 合金相 變態行為之影響, 及其顯微結構的改變。由實驗結果可知, Ti50(Ni25-yCuy)Pd25 及Ti50(Ni30-zCuz)Pd20 系列合金,均為ㄧ皆相變態B2 ←→B19,且變態溫度及變態潛熱均會隨Cu 取代Ni 量的增加而上升。 Ti50(Ni15Cu15)Pd20 與Ti50(Ni15Cu10)Pd25 合金,分別經冷軋延加工30%及 28%後於650℃退火,會有析出物的產生,而壓抑B2←→B19 變態,且 析出物隨退火時間的增加而粗化,退火120 小時後,析出物大小約為1 μm,其成份與基質相較下Ti、Ni 含量較少,而Cu、Pd 含量較多。 Ti50(Ni25Cu5)Pd20 合金經冷軋延加工25%後於500℃退火,會有析出物的 產生,但因析出物極微小,無法在SEM 中觀察之。由SME 測試結果得 知:Ti50(Ni15Cu10)Pd25 及Ti50(Ni25Cu5)Pd20 合金試片經冷軋延加工後,再 經800℃及650℃高溫退火後,其SME 的表現比900℃熱軋延者要好, 而Ti50(Ni25Cu5)Pd20 合金經500℃退火10 分鐘的SME 表現為最佳。 | zh_TW |
| dc.description.abstract | Transformation temperature and latent heat of Ti50(Ni, Cu)50-xPdx
(x:20 ~ 30 at%)high temperature shape memory alloys(SMAs)are studied. In addition, annealing effect on transformation behavior and microstructure of cold-rolled Ti50(Ni, Cu)50-xPdx SMAs is also studied. Ti50(Ni25-yCuy)Pd25 and Ti50(Ni30-zCuz)Pd20 SMAs both exhibit one-stage B2←→B19 transformation, and their Ms and ΔH increase with increasing the Cu substitution. Severely cold-rolled and 650℃ annealed Ti50(Ni15Cu15)Pd20 and Ti50(Ni15Cu10)Pd25 alloys induce precipitates in the matrix. The precipitates increase their size with prolonging annealing time and deteriorates the alloys’ shape memory effec(t SME). The composition of the precipitates is identified as (Ti,Cu)2(Pd,Ni) by EDX test. The precipitates of 25%cold-rolled and 500℃annealed Ti50(Ni25Cu5)Pd20 are too small to be observed in SEM. However, Ti50(Ni15Cu10)Pd25 and Ti50(Ni25Cu5)Pd20 SMAs cold-rolled and annealed at 650℃ and 800℃, respectively, show no precipitate and good SME. Among all Ti50(Ni, Cu)50-xPdx SMAs, Ti50(Ni25Cu5)Pd20 SMA with 25% cold rolling and 500℃×10min annealing 10 mins exhibits the best SME. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:14:07Z (GMT). No. of bitstreams: 1 ntu-95-R93527020-1.pdf: 8265296 bytes, checksum: c0d3df1891112a77e952eb814e7e720a (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
中文摘要…………………………………………………………………...i 英文摘要………………………………………………………….………iii 第一章 前言…...…………………………………………………………1 第二章 文獻回顧………………………………………..………………7 2-1 形狀記憶合金簡介………………………………………………...7 2-1-1 形狀記憶效應(SME)……………………………………..8 2-1-2 PE 效應…………………………………………………….13 2-2 TiNi 基形狀記憶合金…………………………………………...15 2-2-1 TiNi 二元形狀記憶合金之各相與結晶構造……………..15 2-2-2 TiNi 二元形狀記憶合金之力學特性……………………..17 2-3 TiNiPd 三元形狀記憶合金……………………………………...20 2-4 軋延製程………………………………………………………….21 2-5 再結晶退火……………………………………………………….23 第三章 實驗方法及步驟………………………..……………………45 3-1 合金配置及熔煉………………………………………………….45 3-2 輥壓方法及設備………………………………………………….46 3-2-1 熱輥壓………………………………………………….…...46 vi 3-2-2 冷輥壓…………………………………………………........47 3-3 再結晶退火熱處理方法及設…………………………………….48 3-4 DSC 量測………………………………………………………...48 3-5 形狀記憶效應(SME)測試……………………………………..49 3-6 微硬度量………………………………………………………….50 3-7 XRD 晶體結構分析……………………………………………..50 3-8 顯微組織觀察…………………………………………………….51 第四章 實驗結果及討論……………………………………….…….59 4-1 Ti50(Ni19.8Cu0.2)Pd30 合金………………………………………......59 4-2 Ti50(Ni15Cu10)Pd25 合金………………………………………….....60 4-2-1 DSC量測結果……………………………………………..60 4-2-2 XRD 實驗結果…………………………………………….63 4-2-3 硬度量測結果……………………………………………....64 4-2-4 顯微組織觀察之結果…………………………………........65 4-2-5 SME 實驗之結果………………………………………….66 4-3 Ti50(Ni25Cu5)Pd20 合金………………………………………....…..68 4-3-1 DSC之量測結果…………………………………….…….68 4-3-2 XRD 實驗結果…………………………………………….71 4-3-3 硬度量測結果……………………………………………....72 4-3-4 SME 實驗結果…………………………………………….73 4-4 Ti50(Ni15Cu15)Pd20 合金………………………………….....………74 4-4-1 DSC之量測結果……………………………….………….74 4-4-2 XRD 實驗結……………………………………………….76 vii 4-4-3 顯微組織觀察之結果…………………….………………...77 4-5 Ti50Ni50-xPdx <x=25,20>合金,Cu 取代Ni 之影…………............78 4-5-1 Ti50(Ni25-yCuy)Pd25 <y=0,5,10>等合…………………....…78 4-5-2 Ti50(Ni30-zCuz)Pd20 <z=0,5,10,15>等合金…………….......79 第五章 結論...........................................................................................123 參考文獻…………………………………………………..……………127 | |
| dc.language.iso | zh-TW | |
| dc.subject | 再結晶 | zh_TW |
| dc.subject | 高溫形狀 | zh_TW |
| dc.subject | 軋延 | zh_TW |
| dc.subject | 記憶合金 | zh_TW |
| dc.subject | Ti-Ni-Cu-Pd 四元合金 | zh_TW |
| dc.subject | High temperature shape memory alloy | en |
| dc.subject | Ti-Ni-Cu-Pd alloys | en |
| dc.title | Ti50Ni50-XPdX ( X=20∼30 at%)高溫形狀記憶合金中
Cu取代Ni之研究 | zh_TW |
| dc.title | Cu substion for Ni in Ti50Ni50-XPdX ( X=20∼30 at%) HTSMAs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡塵滌,王文雄,林新智,王建義 | |
| dc.subject.keyword | 高溫形狀,記憶合金,Ti-Ni-Cu-Pd 四元合金,冷,軋延,再結晶, | zh_TW |
| dc.subject.keyword | High temperature shape memory alloy,Ti-Ni-Cu-Pd alloys, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2006-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-95-1.pdf Restricted Access | 8.07 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
