請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23997
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
dc.contributor.author | Shao-Ling Wu | en |
dc.contributor.author | 吳少鈴 | zh_TW |
dc.date.accessioned | 2021-06-08T05:13:46Z | - |
dc.date.copyright | 2006-07-21 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-11 | |
dc.identifier.citation | Ai, Y., Liu, Y., Cui, T. and Varahramyan, K., “Thin Film Deposition of an n-type Organic Semiconductor by Ink-jet Printing Technique,” Thin Solid Films, vol.450, pp.312-315, 2004
Bao, Z., Rogers, J. A. and Katz, H. E., “Printable Organic and Polymeric Semiconducting Materials and Devices,” J. Mater. Chem., vol.9, pp.1895-1904, 1999 Bard, A. J. and Faulkner, L. R., Electrochemical Methods Fundamentals and Applications, 2nd ed., John Wiley & Sons, New York, 2001 Bharathan, J. and Yang, Y., “Polymer Electroluminescent Devices Processed by Inkjet Printing: I. Polymer Light-Emitting Logo,” Applied Physics Letters, vol.72, no.21, pp.2660-2662, 1998 Bieri, N. R., Chung, J., Poulikakos, D. and Grigoropoulos, C. P., “Manufacturing of Nanoscale Thickness Gold Lines by Laser Curing of a Discretely Deposited Nanoparticle Suspension,” Superlattices and Microstructures, vol.35, pp.437-444, 2004 Bindra, P., Light, D. and Rath, D., “Mechanisms of Electroless Metal Plating: I. Mixed Potential Theory and the Interdependence of Partial Reactions,” IBM Journal of Research and Development, v.28, no.6, pp.668-678, 1984 Bindra, P., Roldan, J. M. and Arbach, G. V., “Mechanisms of Electroless Metal Plating: II. Decomposition of Formaldehyde,” IBM Journal of Research and Development, v.28, no.6, pp.679-689, 1984 Chang, S. C., Bharathan, J. and Yang, Y., “Dual-color Polymer Light-Emitting Pixels Processed by Hybrid Inkjet Printing,” Applied Physics Letter, vol.73, no.18, pp.2561-2563, 1998 Cheng, K., Yang, M. H., Chiu, W. W. W., Huang, C. Y., Chang, J., Ying, T. F. and Yang, Y., “Ink-Jet Printing, Self-Assembled Polyelectrolytes, and Electroless Plating: Low Cost Fabrication of Circuits on a Flexible Substrate at Room Temperature,” Macromolecular Rapid Communications, vol.26, pp.247-264, 2005 Curtis, C., Rivkin, T., Miedaner, A., Alleman, J., Perkins, J., Smith, L. and Ginley, D., “Metallizations by Direct-Write Inkjet Printing,” NCPV Program Review Meeting, NREL/CP-520-31020, 2001 Donahue, F. M., Wong, K. L. M. and Bhalla, R., “Kinetics of Electroless Copper Plating,” Journal of the Electrochemical Society, v.127, pp.2340-2342, 1980 Dumesic, J., Koutsky, J. A. and Chapman, T. W., “The Rate of Electroless Copper Deposition by Formaldehyde Reduction,” Journal of the Electrochemical Society, v.121, no.11, pp.1405-1411, 1974 Elmqvist, R., “Measuring Instrument of the Recording Type,” U.S. Patent 2566443, 1951 Hertz, C. H. and Simonsson, S. I., “Ink-jet Recorder,” U.S. Patent 3416153, 1968 Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H. and Sturm J. C., “Ink-jet Printing of Doped Polymers for Organic Light Emitting Devices,” Applied Physics Letter, vol.72, no.5, pp.519-521, 1998 Helmut, F. and James, V., “Electroless Gold Plating Bath,” U.S. Patent 4091128, 1978 Hong, C. M. and Wagner, S., “Inkjet Printed Copper Source/Drain Metallization for Amorphous Silicon Thin-Film Transistors,” IEEE Electron Device Letter, vol.21, no.8, 2000 Huang, D., Liao, F., Molesa, S., Redinger, D. and Subramanian V., “Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics,” Journal of the Electrochemical Society, vol.150, no.7, pp.G412-G417, 2003 Jusys, Z. and Vaškelis, A., “Mass Spectrometric Cyclic Voltammetry of Copper in Alkaline Formaldehyde Solutions,” Journal of Electroanalytical Chemistry, vol.335, pp.93-104, 1992 Kobayashi, H. et al., “A Novel RGB Multicolor Light-Emitting Polymer Display,” Synthetic Metals, vol.111-112, pp.125-128, 2000 Konishi, S., Honsho, K., Yanada, M., Minami, I., Kimura, Y. and Ikeda, S., “Direct Drawing Method for Microfabrication Based on Selective Metal Plating Technology,” Sensor and Actuators A, vol. 103, pp.135-142, 2003 Le, H. P., “Progress and Trends in Ink-jet Printing Technology,” Journal of Imaging Science and Technology, vol.42, no.1, 1998 Lin, Y. M. and Yen, S. C., “Effects of Additives and Chelating Agents on Electroless Copper Plating,” Applied Surface Science, vol.178, pp.116-126, 2001 Molesa, S., Redinger, D. R., Huang, D. C. and Subramanian, V., “High-Quality Inkjet-Printed Multilevel Interconnects and Inductive Components on Plastic for Ultra-Low-Cost RFID Applications,” Materials Research Society, 2003 Spring Proceedings, Symposium H8.3, vol. 769 Padilla, A. P., Rodríguez, J. A. and Saitúa, H. A., “Synthesis and Water Ultrafiltration Properties of Silver Membrane Supported on Porous Ceramics,” Desalination, vol.114, pp. 203-208, 1997 Plötner, M., Wegener, T., Richter, S., Howitz, S. and Fischer, W. J., “Investigation of Ink-jet Printing of Poly-3-Octylthiophene for Organic Field-Effect Transistors from Different Solutions,” Synthetic Metals, vol.147, pp.299-303, 2004 Rozenberg, G. G., Bresler, E., Speakman, S. P., Jeynes, C. and Steinke, J. H. G., “Patterned Low Temperature Copper-Rich Deposits Using Inkjet Printing,” Applied Physics Letters, vol.81, no.27, pp.5249-5251, 2002 Shah, P., Kevrekidis, Y. and Benziger, J., “Ink-Jet Printing of Catalyst Patterns for Electroless Metal Deposition,” Langmuir, vol.15, no.4, pp.1584-1587, 1999 Sweet, R. G., “Signal Apparatus with Fluid Drop Recorder,” U.S. Patent 3596275, 1971 Szczech, J. B., Megaridis, C. M., Gamota, D. R. and Zhang, J., “Fine-Line Conductor Manufacturing Using Drop-On-Demand PZT Printing Technology,” IEEE Transactions on Electronics Packaging Manufacturing, vol.25, no.1, pp.26-33, 2002 Sze, S. M., Semiconductor Devices -- Physics and Technology, John Wiley & Sons, 1985 Teng, K. F. and Vest, R. W., “Metallization of Solar Cells with Ink Jet Printing and Silver Metallo-Organic Inks,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.11, no.3, pp.291-297, 1988 Wallace, D. B. and Hayes, D. J., “Solder Jet Printing of Micropads and Vertical Interconnects,” SMTA’s Emerging Technology Symposium, 1997 Wallace, D. B. and Hayes, D. J., “Solder Jet Technology Update,” The International Journal of Microcircuits and Electronic Packaging, vol.21, no.1, 1998 Wang, T. C., Chen, B., Rubner, M. F. and Cohen, R. E., “Selective Electroless Nickel Plating on Polyelectrolyte Multilayer Platforms,” Langmuir, vol.17, no.21, pp.6610-6615, 2001 Xiao, H., Introduction to Semiconductor Manufacturing Technology, Prentice-Hall, NJ, 2001 Xu, X., Luo, X., Zhuang, H., Li, W. And Zhang, B., “Electroless Silver Coating on Fine Copper Powder and Its Effects on Oxidation Resistance,” Materials Letters, v.57, pp. 3987-3991, 2003 林亦懋, 顏溪成, “化學鍍銅中添加劑之效應與旋轉電鍍試驗槽之研究,” 台大化工所博士學位論文, 2001 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23997 | - |
dc.description.abstract | 噴墨列印乃是一種可直接於基板上定義出圖案之技術,由於其具有低操作成本、高材料使用效率、不需微影製程、非接觸式、快速、大面積低溫沈與利於環保等諸多優點,因此近年來在電子產業上具有極大的應用潛力,特別是針對平面及軟性的基材。本實驗期望利用噴墨列印搭配已發展成熟之無電鍍技術,在低溫下直接形成銅與銀導線。
首先以混合電位理論來探討反應物濃度對於無電鍍銅與無電鍍銀系統的影響程度,在無電鍍銅系統中,銅離子濃度的改變對沈積電流密度的影響比甲醛來得大,而無電鍍銀的混合電位與銅相比較偏正值,表示銀系統比較容易有金屬沈積。銀離子還原的速率很快,反應幾乎是瞬間進行,因此非常適用於噴墨列印系統,噴印所得的銀導線厚度約為100 nm,電阻率為4.4 μΩ-cm;而無電鍍銅若將pH調高,添加KOH至1.0M,則銅金屬便能快速地在活性物質的表面還原析出。利用本實驗中所建立的數學模式預測噴印無電銅的反應大約可在12秒左右完成,而噴印所得的銅導線厚度約為25 nm,電阻率為11 μΩ-cm。銅離子的還原反應會伴隨著副產物氫氣的產生,當反應速率加快,氫氣產生的量也會變多,造成銅導線表面的不連續,進而影響導電性質;此外,強鹼的環境下亦會對噴墨頭造成腐蝕現象,縮短噴墨頭的使用壽命。 無電鍍噴印金屬講求快速反應,不同於傳統化鍍講求鍍槽的穩定性,而沈積金屬的厚度與反應時間及溫度無關,欲控制噴印金屬層的厚度可藉由調整噴墨溶液的反應物濃度,或是重覆噴印以使厚度增加。 | zh_TW |
dc.description.abstract | Ink-jet printing, as a derivative of direct-write technology, offers the additional advantages of low cost, high material efficiency, elimination of photolithography, low temperature deposition, friendly environment and non-contact processing. Therefore, it has great potentials for applications on electronics fabrication processes, especially on plane and flexible substrate in recent years. In this study, ink-jet printing is combined with electroless plating which has been fully developed and direct writes cooper and silver lines at low temperature.
First, the mixed-potential theory is applied to investigate the effects of reagents concentrations in both electroless copper and silver plating systems. In the electroless copper plating system, the change in copper concentrations has more effects on the deposition current density than formaldehyde. As compared with the silver system, the mixed potential is more negative, which means the occurrence of copper deposition is not as easy as silver. The reduction rate of silver ion is very fast and silver deposits almost immediately when the silver ion solution meets the reduction agent solution, hence it is suitable for applying to the ink-jet printing system. The thickness of ink-jet silver lines in this study is about 100 nm and the resistivity is 4.4 μΩ-cm. In the electroless copper plating system, copper can deposit very fast on a catalyzed surface by adding 1.0M KOH in the solution to adjust it to a high-pH condition. The reaction completes within about 12 seconds by the prediction of the mathematical model established in this study. The thickness of ink-jet copper lines is about 25 nm and the resistivity is 11 μΩ-cm. Hydrogen is a by-product in the reduction reaction of copper and it comes in a large amount when the copper reduction rate increases. The large amount of hydrogen would cause the discontinuity of surface of copper lines and hence affect the conductivity. Furthermore, the printing head would easily get corrosion in a strong-base environment and hence end its life. Metallization by ink-jet printing based on electroless plating, different from traditional electroless plating bath which calls for the stability of plating bath, needs high reduction rate of metals. The thickness of metal deposited has no relations with reaction time and temperature, but it can be controlled by adjusting the reagents concentration in ink solutions or by jetting multi-layers of metal to form a thicker conductive lines. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:13:46Z (GMT). No. of bitstreams: 1 ntu-95-R93524028-1.pdf: 2387568 bytes, checksum: 5661ae51e671c316cd010ea886d7d621 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 III 圖表目錄 V 第一章 緒論 1 1-1 金屬化製程簡介 2 1-2 無電鍍簡介及應用 6 1-3 噴墨列印技術簡介 8 1-4 噴墨列印技術應用 13 1-5 研究動機 15 第二章 文獻回顧 16 2-1 噴墨列印技術於電子產業的應用 17 2-2 噴印有機金屬溶液之金屬化製程 18 2-3 噴印觸媒層並以無電鍍進行金屬化製程 24 第三章 理論分析與技術 27 3-1 無電鍍原理 27 3-1-1 無電鍍銅原理 28 3-1-2 無電鍍銀原理 31 3-2 電化學測試系統 32 3-2-1 三電極電化學測試系統 32 3-2-2 直流電化學測量技術 33 3-2-3 線性直流極化曲線 34 3-3 混合電位理論 37 第四章 實驗設備與方法 41 4-1 實驗項目與程序 41 4-1-1 無電鍍反應動力量測部分 41 4-1-2 鍍膜表面分析部分 43 4-2 實驗裝置及耗材 47 4-2-1 實驗設備與儀器 47 4-2-2 藥品與耗材 48 第五章 實驗結果與討論 51 5-1 無電鍍銅反應動力學 51 5-1-1 混合電位量測結果 51 5-1-2 反應速率定律式與活化能 52 5-2 銅金屬薄膜表面分析 59 5-2-1 外觀影像結果 59 5-2-2 鍍層結構分析 60 5-3 噴印銅層厚度之數學模式 69 5-4 無電鍍銀之混合電位量測 76 5-5 銀金屬薄膜表面分析 81 5-5-1 外觀影像結果 81 5-5-2 鍍層結構分析 82 第六章 結論 89 6-1 無電鍍反應速率探討 89 6-2 噴墨列印導線之特性 90 6-3 未來研究之延伸與應用 91 符號說明 92 參考文獻 94 附錄 98 | |
dc.language.iso | zh-TW | |
dc.title | 以無電鍍為基礎之噴墨列印金屬化製程 | zh_TW |
dc.title | Metallization by Ink-Jet Printing Based on Electroless Plating | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國川(Kuo-Chuan Ho),高振宏 | |
dc.subject.keyword | 噴墨列印,無電鍍,金屬化,電化學, | zh_TW |
dc.subject.keyword | inkjet printing,electroless plating,metallization,electrochemistry, | en |
dc.relation.page | 100 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2006-07-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。