請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23976完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳怡然(Yi-Jan Chen) | |
| dc.contributor.author | Yang-Tang Tsai | en |
| dc.contributor.author | 蔡泱棠 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:13:24Z | - |
| dc.date.copyright | 2011-08-04 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-01 | |
| dc.identifier.citation | [1] United States Frequency Allocation: The Radio Spectrum, Office of Spectrum Management, NTIA, U.S. Dept. of Commerce, Oct. 2003.
[2] Q. Gu, RF System Design of Transceivers for Wireless Communications, Springer Science+Business Media, LLC, 2005. [3] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, John Wiley & Sons, Inc., 2005. [4] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, Prentice-Hall Inc., 1999. [5] K. Muhammad, et al., “A Discrete-Time Bluetooth Receiver in a 0.13um Digital CMOS Process,” in ISSCC Dig. Tech. Papers, Feb. 2004, pp. 268-527. [6] R. Bagheri, et al., “An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 1932-1941. [7] A. YoshiZawa and S. Iida, “A Gain-Boosted Discrete-Time Charge-Domain FIR LPF with Double-Complementary MOS Parametric Amplifiers,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 58-596. [8] F. Montaudon, et al., “A Scalable 2.4-to-2.7GHz Wi-Fi & WiMAX Discrete-Time Receiver in 65nm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 362-619. [9] A. Geis, et al., “A Compact Low Power SDR receiver with 0.5-20MHz Baseband Sampled Filter,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 285-288. [10] K. S. Kundert and O. Zinke, The Designer’s Guide to Verilog-AMS, Kluwer Academic Publishers, 2004. [11] J. L. Hong, Jr., “The Heterodyne Receiving System and Notes on the Recent Arlington-Salem Tests,” Proceedings of the IRE, vol. 1, pp. 75-97, Jul. 1913. [12] E. H. Armstrong, “The Super-heterodyne – its Origin, Development, and Some Recent Improvements,” Proceeding of the IRE, vol. 12, pp. 539-552, Oct. 1924. [13] F.M. Colebrook, “Homodyne,” Wireless World and Radio Review, vol. 13, pp. 645-648, 1924. [14] A. A. Abidi, “Direct-Conversion Radio Transceivers for Digital Communications,” in ISSCC Dig. Tech. Papers, Feb. 1995, pp. 186-187, 363-364. [15] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998. [16] R.V.L. Hartly, U.S. Patent #1666206, Apr. 1928. [17] L. R. Kahn, “Single-Sideband Transmission by Envelope Elimination and Restoration,” Proceeding of the IRE, vol. 40, no. 7, pp. 803- 806, 1952. [18] D.O. North, “The Absolute Sensitivity of Radio Receivers,” RCA Review, vol. 6, pp. 332-343, Jan. 1942. [19] H.T. Friis, “Noise Figure of Radio Receivers,” Proceeding of the IRE, vol. 32, no. 7, pp. 419-422, Jul. 1944. [20] 3GPP TS 05.05, 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Radio transmission and reception. [21] TIA-98-F, Recommended Minimum Performance Standards for cdma2000 Spread Spectrum Mobile Stations. [22] A. Schmid, et al., 'Galileo/GPS Receiver Fixed-Point Implementation using Conventional and Differential Correlation,' in ION GNSS 18th Int. Tech. Meeting of the Satellite Division, Sept. 2005, pp. 1945-1956. [23] H. A. Haus, et al., 'Representation of Noise in Linear Twoports,' Proceedings of the IRE, vol. 28, no. 1, pp. 69-74, Jan. 1960. [24] D. K. Shaeffer and T. H. Lee, 'A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,' IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, May 1997. [25] T. Soorapanth and T. H. Lee, ”RF Linearity of Short-Channel MOSFETs,” in Proc. of 1st Int. Workshop on Design of Mixed-mode Integrated Circuits and Applications, pp. 81-84, Cancun, Mexico, 1997. [26] S.-G. Lee and J.-K. Choi, 'Current-reuse bleeding mixer,' Electron. Lett., vol. 36, no. 8, pp. 696-697, 13th April 2000. [27] J. G. Maneatics, 'Low-jitter process-independent DLL and PLL based on self-biased techniques,' IEEE J. Solid-State Circuits, vol. 31, pp. 1723-1732, Nov. 1997. [28] Derek K. Shaeffer et al., “A 115-mW, 0.5-μm CMOS GPS receiver with wide dynamic-range active filters,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2219-2231, Dec. 1998. [29] Farbod Behbahani et al., “A 27mW GPS radio in 0.35μm CMOS,” in ISSCC Dig. of Tech. Papers, Feb. 2002. [30] Vladimir Aparin et al., “A highly-integrated tri-band/quad-mode SiGe BiCMOS RF-to-baseband receiver for wireless CDMA/WCDMA/AMPS applications with GPS capability,” in ISSCC Dig. of Tech. Papers, Feb. 2002. [31] Jinho Ko, et al., “A 19-mW 2.6-mm2 L1/L2 dual-band CMOS GPS receiver,” IEEE J. Solid-State Circuits, vol. 40, no. 7, Jul. 2005. [32] Jun-Gi Jo, et al., “An L1-band dual-mode RF receiver for GPS and Galileo in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, Apr. 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23976 | - |
| dc.description.abstract | 本論文著重在GNSS中的L1(1.57542 GHz)以及L5(1.17645 GHz)頻段的訊號,皆屬於CDMA(Code-Division Multiple Access);本接收機可以接收總共十一種訊號。由於功能的需求不同,擁有不同訊號的頻寬,分別是4.092 MHz(L1)以及10.23 MHz(L5)。考量到GNSS的訊號相較於一般通訊系統的訊號要來的微弱(-130 dBm),對於flicker noise(對於先進製程而言,其corner frequency ~ 1 MHz)的影響更加嚴重,進而造成sensitivity降低。架構上採用low-IF(Intermediate Frequency)來避開它。在射頻電路的部分,低雜訊放大器(LNA)可以控制欲接收的頻段,之後由image-rejecting mixer將RF訊號下降至所需要IF的位置;在類比頻段的部分,我們採用了離散時間濾波技術(discrete-time filtering technique),藉由數位電路控制可程式化的電容陣列,實現了可調整頻寬的濾波器。本接收機的可程式特性可以搭配DSP(Discrete-time Signal Processing)的需求做切換,即使在失去對特定系統衛星的追蹤時,可以迅速切轉並接收另一個系統的訊號。讓整體效能提升!
我們採用了0.18-μm CMOS製程設計與實現了一顆全積體化的接收機:從射頻的LNA,image-rejecting mixer,以及產生特定頻率的頻率合成器,到類比頻段可調整接收頻寬的離散時間濾波器。尤其在濾波器方面:(1)藉由數位控制,可濾出頻寬4.092 MHz以及10.23 MHz的訊號;(2)優異的抗製程變異特性,讓模擬和實作之間的差異可以減小;(3)使用較少類比元件的天性,使得我們的接收機隨著製程演進可以降低成本;(4)利用數位操作的獨特性,在靜態上不耗電! | zh_TW |
| dc.description.abstract | The thesis focuses on the L1 (1575.42 MHz) and L5 (1176.45 MHz) bands in GNSS, which are all CDMA (Code-Division Multiple Access) systems; total 11 different signals can be captured by our receiver. Because of different applications, the signal bandwidth is different; they are 4.092 (L1) and 20.46 (L5) MHz. As the GNSS signals are relatively weak (-130 dBm) comparing to other communication systems, the flicker noise (corner frequency ~ 1 MHz in advanced process) has a big impact on the signals and then degrades the sensitivity. Our receiver is low-IF (Inter-mediate Frequency) architecture, which can avoid the low-frequency noise after down-conversion. In RF (Radio Frequency) part of the receiver, the LNA (Low-Noise Amplifier) can select wanted band and the image-reject mixer will down-converts the RF signal to required IF location. In analog part, we use the discrete-time (D.T.) filtering technique to design and implement a bandwidth-reconfigurable filter by digitally controlling a switched-capacitor array. The reconfigurability of the receiver can be controlled by the DSP (Digital-Signal Processing). When we lose the tracking to arbitrary satellites, the receiver can rapidly switch and re-track the signals which are more environmentally-resistive. Therefore, the overall performance can be enhanced!
We use 0.18-μm CMOS process to design and implement a fully-integrated receiver, which includes a switchable dual-band LNA and image-reject mixer at RF, a frequency synthesizer, and bandwidth-reconfigurable D.T. filter. Especially in the D.T. filter, (1) we can filter out 4.092-MHz and 10.23-MHz signals by digital control; (2) excellent process tolerance keeps the difference between simulation and implementation small; (3) with less analog components, the cost of our design will be reduced following the process migration; (4) due to digital control, no static power consumption! | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:13:24Z (GMT). No. of bitstreams: 1 ntu-100-R96943141-1.pdf: 5255535 bytes, checksum: 4c0b312ff05a895a5a0b9ada811e15cd (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | List of Figures vii
List of Tables xv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Global Navigation Satellite System 7 2.1 Brief History and Current Status 7 2.1.1 Global Positioning System (GPS) 8 2.1.2 Global Navigation Satellite System (GLONASS) 10 2.1.3 Galileo 12 2.1.4 Compass/BeiDou Navigation Satellite System 14 2.1.5 Regional Navigational Satellite System 16 2.2 Frequency Plan 17 2.3 Signal Characteristics 18 2.3.1 Multiple Access Techniques 19 2.3.2 Code Delay 21 2.3.3 Doppler Frequency Shift 23 2.3.4 Modulation Schemes 24 2.3.4.1 Phase-Shift Keying (PSK) 25 2.3.4.2 Binary-Offset Carrier Modulation (BOC) 26 2.3.5 Signal Structure 30 2.4 Overview of GNSS Signal Processing 31 Chapter 3 General Discrete-time Filtering Theory 37 3.1 Impact of Scaling Process 37 3.2 Current Integration and Sampling 38 3.2.1 Basic Concept 39 3.2.2 Voltage Sampling vs. Charge Sampling 43 3.2.3 Functional Modeling in Signal-flow Representation 46 3.3 Basic Discrete-Time Filtering Operations 48 3.3.1 Finite-Impulse Response 48 3.3.2 SINC, SINC2, … SINCN 49 3.3.3 Infinite-Impulse Response 51 3.4 Multi-Stage Considerations 53 3.5 Previous Works 55 3.5.1 Digital RF Processor (DRPTM) 55 3.5.2 800MHz-to-6GHz Software-Defined Receiver 57 3.5.3 Gain-Boosted D.T. FIR Low-Pass Filter 58 3.5.4 Scalable Wi-Fi/WiMAX D.T. Receiver 59 3.5.5 Software-Defined Receiver 59 Chapter 4 System Simulation and Specifications 61 4.1 Systematic Design Approach 61 4.2 Receiver Architecture 64 4.2.1 Super-Heterodyne Receiver 64 4.2.2 Direct-Conversion Receiver (Zero-IF Receiver) 66 4.2.3 Low-IF Receiver 67 4.2.4 Image-Reject Receiver 70 4.2.5 Architecture Comparison 71 4.2.6 Switchable Low-IF Architecture for L1/L5 GNSS 72 4.2.6.1 Future Technology Trend: L1 and L5 Bands 72 4.2.6.2 Switchable Low-IF Architecture 73 4.3 Systematic Issues in Receiver Design 78 4.3.1 Multi-Standard Environment 78 4.3.2 SNR, C/n0, and Eb/n0 80 4.3.3 Noise Figure and Sensitivity 82 4.3.4 Image Rejection 84 4.3.5 IF Selection, Total Gain and Dynamic Range 85 4.3.6 Phase Noise 88 4.3.6.1 In-Band Phase Noise 88 4.3.6.2 Out-of-Band Phase Noise 90 4.3.7 Non-Linearity 91 4.3.7.1 In-Band Case 92 4.3.7.2 Out-of-Band Case 93 4.4 From System-to Circuit-Level Specification 94 4.4.1 Receiver Architecture at Circuit Level 94 4.4.2 Receiver Specification 97 4.4.3 Frequency-Synthesizer Specification 100 Chapter 5 RF Front-End 103 5.1 Switchable Dual-Band Low-Noise Amplifier 103 5.1.1 Broadband Input Matching 107 5.1.2 Noise 110 5.1.3 Linearity 111 5.1.4 Switchable LC-Tank Load 113 5.2 Image-Reject Mixer 115 5.2.1 Single-Balanced Mixer 115 5.2.2 Current-Bleeding Technique 118 5.2.3 Poly-Phase Filter 120 Chapter 6 Bandwidth-Reconfigurable Discrete-Time Filter 125 6.1 Overall Design 125 6.2 Trans-Conductance 128 6.2.1 Fully-Differential Topology 128 6.2.2 Common-Mode Feedback 130 6.3 Reconfigurable Capacitor Array 135 6.4 Functional-Control Unit 141 6.5 Output Gain Stage 146 Chapter 7 Ring Oscillator-Based Frequency Synthesizer 149 7.1 Integer-N Architecture 149 7.2 Four-Stage Ring Oscillator with Duty-Cycle Correction 151 7.3 Automatic Frequency Control 153 7.4 Frequency Divider 158 7.5 Resettable Phase-Frequency Detector 165 7.6 Charge Pump 166 7.7 Loop Filter 171 Chapter 8 Experimental Results 173 8.1 Chip Implementation 173 8.2 Measurement Environment 174 8.3 Measurement Techniques 175 8.3.1 Low-Noise Amplifier 176 8.3.2 RF Front-End 178 8.3.3 D.T. Filter 180 8.3.4 Frequency Synthesizer 181 8.4 Results 183 8.5 Comparison with Previous Works 190 Chapter 9 Conclusions 193 9.1 Main Contributions and Achievements 193 9.2 Epilogue 194 References 195 | |
| dc.language.iso | en | |
| dc.subject | 接收機 | zh_TW |
| dc.subject | 離散時間濾波技術 | zh_TW |
| dc.subject | 濾波器 | zh_TW |
| dc.subject | 頻率合成器 | zh_TW |
| dc.subject | 全積體化 | zh_TW |
| dc.subject | GNSS(全球領航衛星系統) | zh_TW |
| dc.subject | GPS(全球定位系統) | zh_TW |
| dc.subject | GNSS | en |
| dc.subject | receiver | en |
| dc.subject | GPS | en |
| dc.subject | Discrete-time filtering technique | en |
| dc.subject | filter | en |
| dc.subject | frequency synthesizer | en |
| dc.subject | fully-integrated | en |
| dc.title | 使用0.18-μm CMOS製程實作應用於GNSS之全積體化雙頻離散時間接收機 | zh_TW |
| dc.title | A 0.18-μm CMOS Fully-Integrated Discrete-Time Receiver for L1 and L5 Bands in GNSS | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 汪重光(Chorng-Kuang Wang),陳昭宏(Jau-Horng Chen) | |
| dc.subject.keyword | 離散時間濾波技術,濾波器,頻率合成器,全積體化,GNSS(全球領航衛星系統),GPS(全球定位系統),接收機, | zh_TW |
| dc.subject.keyword | Discrete-time filtering technique,filter,frequency synthesizer,fully-integrated,GNSS,GPS,receiver, | en |
| dc.relation.page | 198 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
