Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23953
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳良基(Liang-Gee Chen)
dc.contributor.authorYun-Yu Chenen
dc.contributor.author陳韻宇zh_TW
dc.date.accessioned2021-06-08T05:13:00Z-
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-21
dc.identifier.citation[1] KasugaHuang, Modern high ‾eld clinical mri scanner. (3t achieva,
the product of philips at best, the netherlands.),' in NeuroProbes,
May 2006.
[2] A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, A survey
of signal processing algorithms in brain-computer interfaces based on
electrical brain signals,' J Neural Eng, vol. 4, pp. 32{57, Jun 2007.
[3] Immrama Institute, The International 10-20 System of Electrode
Placement,' 2011.
[4] EEG Analysis Group, Vns preliminary analysis / using egi dataset.,'
in Computational Neurodynamics Lab, the University of Memphis,
2007.
[5] NeuroProbes, Neural recording,' in NeuroProbes, 2011.
[6] R. Quian Quiroga, Spike sorting,' Scholarpedia, vol. 2, no. 12, pp.
3583, 2007.
[7] Ikeda H, Clinical electroretinography.,' in Halliday AM (ed) Evoked
Potentials in Clinical Testing. Churchill Livingstone,Edinburgh, 1993.
[8] R. Q. Quiroga, Simulated multi-unit extracellular recordings,'
http://www2.le.ac.uk/departments/engineering/extranet/research-
groups/neuroengineering-lab/software.
71
72
[9] R. Q. Quiroga, Z Nadasdy, and Y. Ben-Shaul, Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering,'
Neural computation, vol. 16, pp. 1661{1687, 2004.
[10] Michael A. Paradiso Mark F. Bear, Barry W. Connors, Neuroscience:
exploring the brain, Third edition,' LWW, 2007.
[11] Saeid Sanei J. A. Chambers, Eeg signal processing,' 2007.
[12] F. Popescu, S. Fazli, Y. Badower, B. Blankertz, and K. R. Muller,
Single trial classi‾cation of motor imagination using 6 dry EEG elec-
trodes,' PLoS ONE, vol. 2, pp. e637, 2007.
[13] P. W. Ferrez and J. Del R. Millan, Simultaneous real-time detection of
motor imagery and error-related potentials for improved bci accuracy,'
2008.
[14] G. R. Muller-Putz1 A. Schlogl C. Brunner, R. Leeb1 and Graz Univer-
sity of Technology Austria; Institute for Human-Computer Interfaces
Graz University of Technology Austria G. Pfurtscheller, Institute for
Knowledge Discovery, Bci competition 2008, graz data set iia,' 2008.
[15] Yun-Yu Chen, Tung-Chien Chen, and Liang-Gee Chen, Accuracy and
power tradeoR in spike sorting microsystems with cubic spline interpo-
lation,' in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on, 30 2010-june 2 2010, pp. 1508 {1511.
[16] Guang-Li Wang and Pei-Ji Liang, Method for robust spike sorting
with overlap decomposition,' in Engineering in Medicine and Biology
Society, 2005. IEEE-EMBS 2005. 27th Annual International Confer-
ence of the, jan. 2005, pp. 2013 {2016.
[17] E. W. Sellers, D. J. Krusienski, D. J. McFarland, T. M. Vaughan,
and J. R. Wolpaw, A P300 event-related potential brain-computer
73
interface (BCI): the eRects of matrix size and inter stimulus interval on
performance,' Biol Psychol, vol. 73, pp. 242{252, Oct 2006.
[18] B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli,
S. Haufe, C. Maeder, L. Ramsey, I. Sturm, G. Curio, and K. R. Muller,
The Berlin Brain-Computer Interface: Non-Medical Uses of BCI Tech-
nology,' Front Neurosci, vol. 4, pp. 198, 2010.
[19] F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi, A
review of classi‾cation algorithms for EEG-based brain-computer in-
terfaces,' J Neural Eng, vol. 4, pp. R1{R13, Jun 2007.
[20] B. Graimann, J. E. Huggins, S. P. Levine, and G. Pfurtscheller, Vi-
sualization of signi‾cant ERD/ERS patterns in multichannel EEG and
ECoG data,' Clin Neurophysiol, vol. 113, pp. 43{47, Jan 2002.
[21] C. A. Kell, K. von Kriegstein, A. Rosler, A. Kleinschmidt, and H. Laufs,
The sensory cortical representation of the human penis: revisiting
somatotopy in the male homunculus,' J. Neurosci., vol. 25, pp. 5984{
5987, Jun 2005.
[22] D. V. Moretti, F. Babiloni, F. Carducci, F. Cincotti, E. Remondini,
P. M. Rossini, S. Salinari, and C. Babiloni, Computerized processing
of EEG-EOG-EMG artifacts for multi-centric studies in EEG oscilla-
tions and event-related potentials,' Int J Psychophysiol, vol. 47, pp.
199{216, Mar 2003.
[23] B. Allison, T. Luth, D. Valbuena, A. Teymourian, I. Volosyak, and
A. Graser, Bci demographics: How many (and what kinds of) people
can use an ssvep bci?,' Neural Systems and Rehabilitation Engineering,
IEEE Transactions on, vol. 18, no. 2, pp. 107 {116, april 2010.
[24] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, Robust ‾lter bank
common spatial pattern (RFBCSP) in motor-imagery-based brain-
74
computer interface,' Conf Proc IEEE Eng Med Biol Soc, vol. 2009,
pp. 578{581, 2009.
[25] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller,
Optimizing spatial ‾lters for robust eeg single-trial analysis,' Signal
Processing Magazine, IEEE, vol. 25, no. 1, pp. 41 {56, 2008.
[26] Kui Chen, Qingguo Wei, and Yuhui Ma, An unweighted exhaustive
diagonalization based multi-class common spatial pattern algorithm in
brain-computer interfaces,' in Information Engineering and Computer
Science (ICIECS), 2010 2nd International Conference on, dec. 2010,
pp. 1 {5.
[27] K. K. Ang and C. Quek, Stock trading using RSPOP: a novel rough
set-based neuro-fuzzy approach,' IEEE Trans Neural Netw, vol. 17,
pp. 1301{1315, Sep 2006.
[28] A. Schlogl, F. Lee, H. Bischof, and G. Pfurtscheller, Characterization
of four-class motor imagery EEG data for the BCI-competition 2005,'
J Neural Eng, vol. 2, pp. 14{22, Dec 2005.
[29] A. Butt‾eld, P.W. Ferrez, and Jd.R. Millan, Towards a robust bci:
error potentials and online learning,' Neural Systems and Rehabilita-
tion Engineering, IEEE Transactions on, vol. 14, no. 2, pp. 164 {168,
june 2006.
[30] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and JAorg
Sander, Lof: identifying density-based local outliers,' in Proceedings
of the 2000 ACM SIGMOD international conference on Management
of data, New York, NY, USA, 2000, SIGMOD '00, pp. 93{104, ACM.
[31] M. Abeles and M. H. Goldstein, Multispike train analysis,' Proceed-
ings of the IEEE, vol. 65, no. 5, pp. 762{773, 1977.
75
[32] M. S. Lewicki, Bayesian modeling and classi‾cation of neural signals,'
Neural Computation, vol. 6, no. 5, pp. 1005{1030, 1994.
[33] J. Carmena, M. Lebedev, R. E. Crist, J. E. ODoherty, D. M. Santucci,
D. Dimitrov, P. Patil, C. S. Henriquez, , and M. A. Nicolelis, Learn-
ing to control a brain-machine interface for reaching and grasping by
primates,' PLoS Biology, vol. 1, no. 2, pp. 193{208, 2003.
[34] M. Velliste and et al., Cortical control of a prosthetic arm for self-
feeding,' Nature, vol. 453, pp. 1098{1101, 2008.
[35] Z. Zumsteg, C. Kemere, S. ODriscoll, G. Santhanam, R. Ahmed,
K. Shenoy, and T. Meng, Power feasibility of implantable digital
spike sorting circuits for neural prosthetic systems,' IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 3,
pp. 272{279, 2005.
[36] M.D. Linderman, G. Santhanam, C.T. Kemere, V. Gilja, S. O'Driscoll,
B.M. Yu, A. Afshar, S.I. Ryu, K.V. Shenoy, and T.H. Meng, Signal
processing challenges for neural prostheses,' IEEE Signal Processing
Magazine, vol. 25, no. 1, pp. 18{28, 2008.
[37] R. H. Olsson and K. D. Wise, A three-dimensional neural record-
ing microsystem with implantable data compression circuitry,' IEEE
Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2796{2804, 2005.
[38] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black,
B. Greger, and F. Solzbacher, A low-power integrated circuit for
a wireless 100-electrode neural recording system,' IEEE Journal of
Solid-State Circuits, vol. 42, no. 1, pp. 123{133, 2007.
[39] C.L. Rogers, J.G. Harris, J.C. Principe, and J.C. Sanchez, A pulse-
based feature extractor for spike sorting neural signals,' in Proceeding
76
of 3rd International IEEE/EMBS Conference on Neural Engineering,
May 2007, pp. 490{493.
[40] M. Chae, W. Liu, Z. Yang, T.-C. Chen, J. Kim, M. Sivaprakasam,
and M. Yuce, A 128-channel 6mw wireless neural recording ic with
on-the-°y spike sorting and uwb transmitter,' in Proceeding of IEEE
International Solid-State Circuits Conference, Feb 2008, pp. 146{603.
[41] T. C. Chen, K. Chen, Z. Yang, K. Cockerham, and W. Liu, A biomed-
ical multiprocessor soc for closed-loop neuroprosthetic applications,' in
Proceeding of IEEE International Solid-State Circuits Conference, Feb.
2009, vol. 25, pp. 434{435.
[42] V. Karkare, S. Gibson, and D. Markovic, A 130-gw, 64-channel spike-
sorting dsp chip,' in Proceeding of IEEE Asian Solid-State Circuits
Conference, 2009, pp. 289{292.
[43] T.-C. Chen, W. Liu, and L.-G. Chen, 128-channel spike sorting pro-
cessor with parallel-folding structure in 90nm process,' in Proceeding
of IEEE International Symposium on Circuits and Systems, 2009, pp.
1253{1256.
[44] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni,
An activity-dependent brain microstimulation SoC with integrated
23nV/rtHz neural recording front-end and 750nW spike discrimination
processor,' in IEEE Symposium on VLSI Circuits, 2010, pp. 223{224.
[45] S. Gibson, J. W. Judy, and D. Markovic, Technology-aware algorithm
design for neural spike detection, feature extraction, and dimensionality
reduction,' IEEE Transactions on Neural Systems and Rehabilitation
Engineering, to apear.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23953-
dc.description.abstract腦機介面可以用於控制外部儀器,而且極可能成為下一個世代的使用者與電腦的操作介面。應用於腦電訊號暨動作相關腦機介面是腦機介面的主要關鍵,並會於接下來的論文中做深入探討。應用於腦電訊號暨動作相關腦機介面通常用於溝通和控制。然而,這個系統需要大量的資料來做演算法的訓練。蒐集訓練所需要的資料會耗費大量的時間,會減少在日常生活中使用此系統的可能性。
在此篇論文中,蒐集訓練資料所耗費的時間和演算法的準確度之間的權衡首先被分析,接著並重複使用通用且事先錄製好的訓練資料來增進兩者之間的權衡。根據知識轉移理論,重複使用事先錄製好的訓練資料可以補償因樣本之間的差異性造成的資訊不足,並克服維度傷害的問題。此外,我們提出了一個信心模型,利用不同的特徵和回饋來對分類結果做信賴程度的評估,用以支援線上學習系統。根據模擬的結果,蒐集訓練所花的時間中,有93.4%可以被省略且不會造成準確度的下降。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T05:13:00Z (GMT). No. of bitstreams: 1
ntu-100-R98943047-1.pdf: 4759746 bytes, checksum: 2dda9e543c6ad22f7350181716aeda1b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract xiii
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brain Computer Interface . . . . . . . . . . . . . . . . . . . 5
1.3 Characteristics of EEG Signal Processing . . . . . . . . . . . 6
1.3.1 EEG Formation . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 EEG Signal Characteristics . . . . . . . . . . . . . . 7
1.3.3 Brain Rhythms . . . . . . . . . . . . . . . . . . . . . 7
1.3.4 EEG Recording and Measurement . . . . . . . . . . . 8
1.4 Neuron Signal and Spike Sorting . . . . . . . . . . . . . . . . 9
1.4.1 Neural Recording . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Spike . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Spike Sorting . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . 11
2 EEG-based Motion-related Brain Computer Interface 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Stimulus-Driven BCI . . . . . . . . . . . . . . . . . . 14
2.1.2 User-Driven BCI . . . . . . . . . . . . . . . . . . . . 15
2.2 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Reduction of Training Data Collection Time . . . . . 19
2.2.2 Evolution of Training Data Collection Time . . . . . 20
2.2.3 The Problem of Existing System . . . . . . . . . . . 20
2.3 Proposed Unsupervised On-line Learning System for EEG-
based Motion-related BCI . . . . . . . . . . . . . . . . . . . 22
2.3.1 The Foundation of the Proposed System and Simula-
tion Environment . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Exploration of Reusing the Pre-recorded Training Data
Set to Improve the Supervised Classi‾er for EEG-
based Motor-related BCI . . . . . . . . . . . . . . . . 24
2.3.3 Unsupervised On-line Learning Scheme . . . . . . . . 30
2.3.4 Simulation Results . . . . . . . . . . . . . . . . . . . 34
2.4 Demo of EEG-based Motion-related Brain Computer Interface 36
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Analysis and Implementation of Cubic Spline Interpolation
for Spike Sorting Microsystems 45
3.1 Cortically-Controlled BCI and Spike Sorting Microsystem . . 45
3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Sampling Skew and Waveform Distortion . . . . . . . 47
3.2.2 Power and Accuracy TradeoR . . . . . . . . . . . . . 48
3.3 The Proposed Spike Sorting Microsystems With Interpolation 50
3.3.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Proposed OR-site Spike Sorter with Interpolation . . 50
3.3.3 Proposed On-chip Spike Sorter with Interpolation . . 51
3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Simulation Environment . . . . . . . . . . . . . . . . 53
3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . 54
3.5 Hardware Architecture Design and Implementation . . . . . 57
3.5.1 Review of Cubic Spline Interpolation Algorithm . . . 57
3.5.2 Proposed Architecture . . . . . . . . . . . . . . . . . 58
3.5.3 Implementation Results . . . . . . . . . . . . . . . . 65
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4 Conclusion 69
Bibliography 71
dc.language.isoen
dc.subject腦機介面zh_TW
dc.subject線上學習系統zh_TW
dc.subject腦電訊號zh_TW
dc.subject動作相關zh_TW
dc.subjectOn-line Learning Systemen
dc.subjectElectroencephalography (EEG)en
dc.subjectBrain Computer Interfaceen
dc.subjectMotion-relateden
dc.title應用於腦電訊號暨動作相關腦機介面之非監督式線上學習系統zh_TW
dc.titleUnsupervised On-line Learning System of Motion-related Brain Computer Interface Based on Electroencephalography (EEG)en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林志隆,林啟萬,陳建中,黃聖傑
dc.subject.keyword腦電訊號,動作相關,腦機介面,線上學習系統,zh_TW
dc.subject.keywordOn-line Learning System,Motion-related,Brain Computer Interface,Electroencephalography (EEG),en
dc.relation.page77
dc.rights.note未授權
dc.date.accepted2011-08-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved