請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23933
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉興華 | |
dc.contributor.author | Yi-Wei Lin | en |
dc.contributor.author | 林益維 | zh_TW |
dc.date.accessioned | 2021-06-08T05:12:43Z | - |
dc.date.copyright | 2006-08-03 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-18 | |
dc.identifier.citation | 1. Nath KA. Tubulointerstitial changes as a major determinant in progression of
renal damage. Am J Kidney Dis 1992; 1: 1–17. 2. Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1996; 7: 2495–2508. 3. Klahr S. Progression of chronic renal disease. Heart Dis 2001; 3: 205–209. 4. Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertens 2000; 9: 133–138. 5. D’Amico G. Tubulo-interstitial damage in glomerular disease: Its role in the progression of the renal damage. Nephrol Dial Transplant 1998; 13 (Suppl 1): 80–85. 6. St Peter WL, Obrador GT, Roberts TL, Collins AJ. Trends in intravenous iron use among dialysis patients in the United States (1994-2002). Am J Kidney Dis 2005; 46: 650–660. 7. Atkins RC. The epidemiology of chronic kidney disease. Kidney Int 2005; Suppl 94: S14–S18. 8. White SL, Cass A, Atkins RC, Chadban SJ. Chronic kidney disease in the general population. Adv Chronic Kidney Dis 2005; 12: 5–13. 9. Glassock RJ. The rising tide of end-stage renal disease: what can be done? Clin Exp Nephrol 2004; 8: 291–296. 10. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003; 41: 1–12. 11. United States Renal Data System. USRDS 2002 annual data report. Bethesda, MD: The National Institute of Diabetes and Digestive and Kidney Diseases. 2002. 12. National Kidney Foundation K/DOQI.KDOQI CKD. Clinical practice guidelines for chronic kidney disease: Evaluation, classification and stratification. National Kidney Foundation 2002. Retrieved May 23, 2005, from http://www.kidney.org 13. Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med 1998; 339: 1448–1456. 14. Strutz F, Muller GA. Intertistial pathomechanisms underlying progressive tubulointerstitial damage. Kidney Blood Press Res 1999; 22: 71–80. 15. Spühler O, Zollinger HU. Chronic interstitial nephritis. Z Klin Med 1953; 151: 1–50. 16. Chen L, Boadle RA, Harris DC. Toxicity of holotransferrin but not albumin in proximal tubule cells in primary culture. J Am Soc Nephrol 1998; 9: 77–84. 17. Strutz F, Neilson EG. New insights into mechanism of fibrosis in immune renal injury. Springer Semin Immunopathol 2003; 24: 459–476. 18. D’Amico G. Tubulointerstitium as predictor of progression of glomerular disease. Nephron 1999; 83: 289–295. 19. Kuncio GS, Neilson EG, Haverty T. Mechanisms of tubulointerstitial fibrosis. Kidney Int 1991; 39: 550–556. 20. Zeisberg M, Strutz F, Muller GA. Renal fibrosis: an update. Curr Opin Nephrol Hypertens 2001; 10: 315–320. 21. Eddy AA. Molecular basis of renal fibrosis. Pedatr Nephrol 2000; 15: 290–301. 22. Zhu J, Wu J, Frizell E, Liu SL, Bashey R, Rubin R, Norton P, Zern MA. Sirolimus inhibits hepatic satellite cell proliferation in vitro and limits fibrogenesis in an in vivo model of liver fibrosis. Gastroenterology 1999; 117: 1198–204. 23. Anders HJ, Vielhauer V, Kretzlier M, Cohen CD, Segerer S, Luckow B, Weller L, Grone HJ, Schlondorff D. Chemokines and chemokine receptor expression during initiation and resolution of immune complex glomerulonephritis. J Am Soc Nephrol 2001; 12: 919–931. 24. Anders HJ, Vielhauer V, Schlondorff D. Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int 2003; 63: 401–415. 25. Muller GA, Markovic-Lipkovski J, Frank J, Rodemann HP. The role of interstitial cells in the progression of renal diseases. J Am Soc Nephrol 1992; 2: S198–S205. 26. Ivanyi B, Olsen S. Tubulitis in renal disease. Curr Top Pathol 1995; 88: 117–143. 27. Strutz F, Neilson EG. The role of lymphocytes in the progression of interstitial disease. Kidney Int 1994; 45(suppl 45): S106–S110. 28. Lavaud S, Poirier B, Mandet C, Belair MF, Irinopoulou T, Heudes D, Bazin R, Bariety J, Myara I, Chevalier J. Inflammation is probably not a prerequisite for renal interstitial fibrosis in normoglycemic obese rats. Am J Physiol Renal Physiol 2001; 280: F683–F694. 29. Kondo S, Kagami S, Kido H, Strutz F, Muller GA, Kuroda Y. Role of mast cell tryptase in renal interstitial fibrosis. J Am Soc Nephrol 2001; 12: 1668–1676. 30. Iwano M, Plieth D, Danoff TM, Xue C, Odaka H, Neilson EC. Evidence that fibroblast derived from epithelium during tissue fibrosis. J Clin Invest 2002; 110: 341–350. 31. Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W, Nikolic-Paterson DJ, Atkins RC, Lan HY. Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 1998; 54: 864–876. 32. Lan HY. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubular cells. Curr Opin Nephrol Hypertens 2003; 12: 25–29. 33. MacPherson BR, Leslie KO, Lizaro KV, Schwarz JE. Contractile cells of the kidney in primary glomerular disorders: An immunohistochemical study using anti-alpha-smooth muscle actin monoclonal antibody. Hum Pathol 1993; 24: 710–716. 34. Alpers CE, Hudkins KL, Floege J, Johnson RJ. Human renal cortical interstitial cells with some features of smooth muscle cell participate in tubulointerstitial and crecentic glomerular injury. J Am Soc Nephrol 1994; 5: 201–209. 35. Gabbiani G. The biology of the myofibroblast. Kidney Int 1992; 41: 530–532. 36. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implication in renal interstitial fibrosis. Am J Pathol 2001; 159: 1465–1475. 37. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112: 1776–1784. 38. Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 2004; 82: 175–181. 39. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004; 15: 1–12. 40. Ljungquist A. The intrarenal arterial pattern in the normal and diseased human kidney. Acta Med Scand 1963; 174(Suppl401): 5–34. 41. Leask A, Abraham DJ. TGF-β signaling and the fibrotic response. FASEB J 2004; 18: 816–827. 42. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006; 69: 213–217. 43. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99–146. 44. Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, Grotendorst GR. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: Down-regulation by cAMP. FASEB J 1999;13: 1774–1786. 45. Fogo AB. Renal fibrosis: not just PAI-1 in the sky. J Clin Invest 2003; 112: 326–328. 46. Yamamoto T, Noble NA, Miller DE, Miller DE, Border WA. Sustained expression of TGF-β1 underlies development of progressive kidney fibrosis. Kidney Int 1994; 45: 916–927. 47. Eddy AA. Protein restriction reduces transforming growth factor-β and interstitial fibrosis in nephrotic syndrome. Am J Physiol 1994; 266: F884–F893. 48. Eddy AA. Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions. J Am Soc Nephrol 1994; 5: 1273–1287. 49. Downer G, Phan SH, Wiggins RC. Analysis of renal fibrosis in a rabbit model of crescentic nephritis. J Clin Invest 1988; 82: 998–1006. 50. Hamaguchi A, Kim S, Ohta K, Yagi K, Yukimura T, Miura K, Fukuda T, Iwao H Transforming growth factor-β1 expression and phenotypic modulation in the kidney of hypertensive rats. Hypertension 1995; 26: 199–207. 51. Kaneto H, Morrissey J, Klahr S. Increased expression of TGF-β1 mRNA in the obstructed kidney of rats with unilateral ureteral ligation. Kidney Int 1993; 44: 313–321. 52. Wang W, Koka B, Lan HY. Transforming growth factor-β and Smad signaling in kidney disease. Nephrology 2005; 10: 48–56. 53. Okada H, Kalluri R. Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis. Curr Mol Med 2005; 5: 467–474. 54. Ivano M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens 2004; 13: 279–284. 55. Norman JT, Orphanides C, Garcia PL, Fine LG. Hypoxia-induced changes in extracellular matrix metabolism in renal cells. Exp Nephrol 1999; 7: 463–469. 56. Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 2000; 58: 2361–2366. 57. Tang WW, Van GY, Qi M. Myofibroblasts and alpha 1 (Ⅲ) collagen expression in experimental tubulointerstitial nephritis. Kidney Int 1997; 51: 926–931. 58. Alpers CE, Hudkins KL, Floege J, Johnson RJ. Human renal cortical interstitial cells with some features of smooth muscle cell participate in tubulointerstitial and crecentic glomerular injury. J Am Soc Nephrol 1994; 5: 201–209. 59. Hewitson TD, Wu HL, Becker GJ. Interstitial myofibroblasts in experimental renal infection and scarring. Am J Nephrol 1995; 15: 411–417. 60. Roberts IS, Burrows C, Shanks JH, Venning M, McWilliam LJ. Interstitial myofibroblasts: Predictors of progression in membranous nephropathy. J Clin Pathol 1997; 50: 123–127. 61. Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, Shortland J, Brown CB, el Nahas AM. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transplant 1997; 12: 43–50. 62. Bucala R, Spiegel LA, Chensey J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1:71–81. 63. Masur SK, Dewal HS, Dinh TT, Erenburg I, Petridous S. Myofibroblasts differentiate from fibroblasts when plated at low density. Proc Natl Acad Sci USA 1996; 93: 4219–4223. 64. Yang N, Wu LL, Nikolic-Paterson DJ, Y NG, W Yang, W MU, Gilbert R, Copper M, Atkins R, Lan H. Local macrophage and myofibroblast proliferation in 5/6 nephretomised rat model. Nephrol Dial Transplant 1998; 13: 1967–1974. 65. Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P. TGF-β type1 receptor/ALK-5 and Smad proteins mediated epithelial to mesenchymal trans- differentiation in NMuMG breast epithelial cells. J Cell Sci 1999; 112:4557–4588. 66. Rockey DC. The cell and molecular biology of hepatic fibrogenesis. Clinical andtherapeutic implication. Clin Liver Dis 2000; 4: 329–355. 67. Hay ED, Zuk A. Transformation between epithelium and mesenchyme: normal,pathological, and experimentally induced. Am J Kidney Dis 1995; 26: 678–690. 68. Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RJ, Lan HY. Transforming growth factorβregulates tubular epithelial-myofibroblast trans- differentiation in vitro. Kidney Int 1999; 56: 1455–1467. 69. Li JH, Zhu HJ, Huang XR, Lai KN, Johnson RJ, Lan HY. Smad7 inhibits fibrotic effect of TGF-βon renal tubular epithelial cell by blocking Smad2 activation. J Am Soc Nephrol 2002; 13: 1464–1472. 70. Border WA, Noble N. TGF-beta in kidney disease: A target for gene therapy. Kidney Int 1997; 51: 1388–1396. 71. Isaka Y, Tsujie M, Ando Y, Nakamura H, Kaneda Y, Imai E, Hori M. Trans- forming growth factor-beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 2000; 58: 1885–1892. 72. Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, Morishita R, Johnson RJ. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound- microbubble system in rat UUO model. J Am Soc Nephrol 2003; 14: 1535–1548. 73. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson FG. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 2002; 61: 1714–1728. 74. Fan JM, Huang XR, Ng YY, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY. Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-beta 1-dependent mechanism in vitro. Am J Kidney Dis 2001; 37: 820–831. 75. Vesey DA, Cheung CW, Cuttle L, Endre ZA, Gobe G, Johnson DW. Interleukin- 1 beta induce human proximal tubular injury, alpha-smooth muscle actinexpressin and fibronectin production. Kidney Int 2002; 62: 31–40. 76. Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Copper ME, Lan HY. Advanced glycation end products induce tubular epithelial-myofibroblast transition through RAGE-ERK 1/2 MAP kinase signaling pathway. Am J Pathol 2004; 164: 1389–1397. 77. Yang J, Lui Y. Blockage of tubular epithelial to myofibroblasts transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol 2002; 13: 96–107. 78. Bush KT, Tsukamoto T, Nigam SK. Selective degradation of E-cadherin and dissolution of E-cadherin-catenin complexes in epithelial ischemia. Am J Physol 2000; 278: F847–F852. 79. Riethmacher D, Brinkmann V, Brichmeier C. A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci USA 1995; 92: 855–859. 80. Maruyama Y, Kuribara H, Morita M, Yuzurihara M, Weintraub ST. Identification of magnolol and honokiol as anxiolytic agents in extracts of saiboku-to, an oriental herbal medicine. J Nat Prod 1998; 61: 135–138. 81. Watanabe K, Watanabe H, Goto Y, Yamaguchi M, Yamamoto N, Hagino K. Pharmacological properties of magnolol and honokiol extracted from Magnolia officinalis: central depressant effects. Planta Med 1983; 49: 103–108. 82. Fujita M, Itokawa H, Sashida Y. Studies on the components of Magnolia obovata Thunb: 3. Occurrence of magnolol and honokiol in M. obovata and other allied plants. Yakugaku Zasshi 1973; 93: 429–434. 83. Juangsu New Medical College. Zhong Yao Da Ci Dian (Dictionary of Chinese Material Medica). Shanghai Scientific and Technological Publishers: Shanghai, 1985. 84. Pyo MK, Lee Y, Yun-choi HS, Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch Pharm Res 2002; 25: 325–328. 85. Teng CM, Chen CC, Ko FN, Lee LG, Huang TF, Chen YP, Hus HY. Two antiplatelet agents from Magnolia officinalis. Thromb Res 1988; 50: 757–765. 86. Tsai SK, Huang CH, Huang SS, Hung LM, Hong CY. Antiarrhythmic effect of magnolol and honokiol during acute phase of coronary occlusion in anesthetizedrats: influence of L-NAME and aspirin. Pharmacology 1999; 59: 227–233. 87. Chang WS, Chang YH, Lu FJ, Chiang HC. Inhibitory effects of phenolics on xanthine oxidase. Anticancer Res 1994;14: 501–506. 88. Park EJ, Zhao YZ, Na M, Bae K, Kim YH, Lee BH, Sohn DH. Protective effects of honokiol and magnolol on tertiary butyl hydroperoxide- or D-galactosamine- induced toxicity in rat primary hepatocytes. Planta Med 2003; 69: 33–37. 89. Kuribara H, Stavinoha WB, Maruyama Y. Honokiol, a putative anxiolytic agent extracted from magnolia bark, has no diazepam-like side-effects in mice. J Pharm Pharmacol 1999; 51: 97–103. 90. Shin TY, Kim DK, Chae BS, Lee EJ, Antiallergic action of magnolia officinalison immediate hypersensitivity reaction. Arch Pharm Res 2001; 24: 249–255. 91. Park J, Lee J, Jung E, Park Y, Kim K, Park B, Jung K, Park E, Kim J, Park D. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against propionibacterium sp.. Eur J Pharmacol 2004; 496: 189–195. 92. Chang B, Lee Y, Ku Y, Bae K, Chung C. Antimicrobial activity of magnolol and honokiol against periodontopathic microorganisms. Planta Med 1998; 64: 367–369. 93. Clark AM, El-Feraly FS, Li WS. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J Pharm Sci 1981; 70: 951–952. 94. Bang KH, Kim YK, Min BS, Na MK, Rhee YH, Lee JP, Bae KH. Antifungalactivity of magnolol and honokiol. Arch Pharm Res 2000; 23: 46–49. 95. Teng CM, Yu SM, Chen CC, Huang YL, Huang TF. EDRF release and Ca++-channel blockade by magnolol, and antiplatelet agent isolated from Chinese herb Magnolia officinalis. Life Sci 1990; 47: 1153–1161. 96. Lo YC, Teng CM, Chen CF, Chen CC, Hong CY. Magnolol and honokiol isolated from magnolia officinalis protect rat heart mitochondria against lipid peroxidation.Biochem Pharmacol 1994; 47: 549–553. 97. Liou KT, Shen YC, Chen CF, Tsao CM, Tsai SK. Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res 2003; 992:159–166. 98. Liou KT, Lin SM, Huang SS, Chih CL, Tsai SK. Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats. Planta Med 2003; 69: 130–134. 99. Hirano T, Gotoh M, Oka K. Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci 1994; 55: 1061–1069. 100. Hibasami H, Achiwa Y, Katsuzaki H, Imai K, Yoshioka K, Nakanishi K, Ishii Y, Hasegawa M, Komiya T. Honokiol induces apoptosis in human lymphoid leukemia Molt 4B cells. Int J Mol Med 1998; 2: 671–673. 101. Battle TE, Arbiser J, Frank DA. The natural product honokiol induces caspase- dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood 2005; 106: 690–697. 102. Ishitsuka K, Hideshima T, Hamasaki M, Raje N, Kumar S, Hideshima H, Shiraishi N, Yasui H, Roccaro AM, Richardson P, Podar K, Le Gouill S, Chauhan D, Tamura K, Arbiser J, Anderson KC. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and independent apoptosis. Blood 2005; 5: 1794–1800. 103. Yang SE, Hsieh MT, Tsai TH, Hsu SL. Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochem Pharmacol 2002; 63: 1641–1651. 104. Chen F, Wang T, Wu YF, Gu Y, Xu XL, Zheng S, Hu X. Honokiol: a potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol 2004; 10: 3459–3463. 105. Wang T, Chen F, Chen Z, Wu YF, Xu XL, Zheng S, et al. Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO. World J Gastroenterol 2004; 10: 2205–2208. 106. Park EJ, Zhao YZ, Kim YH, Lee BH, Sohn DH. Honokiol induce apoptosis via cytochrome c release and caspase activation in activated rat hepatic stellate cells in vitro. Planta Med 2005; 71: 82–84. 107. Konoshima T, Kozuka M, Tokuda H, Nihsino H, Iwashima A, Haruna M, Ito K, Tanabe M. Studies on inhibitors of skin tumor promotion, IX: neolignans fromMagnolia officinalis. J Nat Prod 1991; 54: 816–822. 108. Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Der CJ, Battle T, Frank DA, Ye K, Murad E, Dubiel W, Soff G, Arbiser JL. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 2003; 278: 35501–35507. 109. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis: the role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int 2003; 64 (Supp 87): S105–S112. 110. Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int 2001; 59: 2023–2038. 111. Mizuno S, Kurosawa T, Matsumoto K, Mizuno-Horikawa Y, Okamoto M, Nakamura T. Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 1998; 101: 1827–1834. 112. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003; 9: 964–968. 113. Boffa JJ, Tharaux PL. Dussaule JC, Chatziantoniou C. Regression of renal vascular fibrosis by endothelin receptor antagonism. Hypertension 2001; 37: 490–496. 114. Wu L, Cox A, Roe C, Dziadek M, Copper ME, Gilbert RE. Transforming growth factor beta 1 and renal injury following subtotal nephrectomy in the rat: role of therenin–angiotensin system. Kidney Int 1997; 51: 1553–1567. 115. Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V, Nepomuceno T, Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 2005; 67: 237–247. 116. Klahr S. Urinary tract obstruction. Semin Nephrol 2001; 21: 133–145. 117. Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S. Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 1995; 47: 1285–1294. 118. Klahr S, Morrissey J. Obstructive nephropathy andcrenal fibrosis. Am J Physiol Renal Physiol 2002; 283: F861–F875. 119. Bitzer M, Sterzel RB, Bottinger EP. Transforming growth factor-beta in renal disease. Kidney Blood Press Res 1998; 21:1–12. 120. Bottinger EP, Bitzer M. TGF-β signaling in renal disease. J Am Soc Nephrol 2002; 13: 2600–2610. 121. Derynck R, Zhang Y, Feng XH. Smads: Transcriptional activators of TGF-betaresponses. Cell 1998; 95: 737–740. 122. Heldin CH, Miyazono K, Ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471. 123. Chen YG, Hata A, Lo RS, Wotten D, Shi Y, Pavletich N, Massague J. Determinants of specificity in TGF-beta signal transduction. Genes Dev 1998; 12: 2144–2152, 124. Gupta S, Clarkson MR, Duggan J, Brady HR. Connective tissue growth factor: Potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int 2000; 58: 1389–1399. 125. Wang S, Denichilo M, Brubaker C, Hirschberg R: Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int 2001; 60: 96–105. 126. Inoue T, Okada H, Kobayashi T, Watanabe Y, Kanno Y, Kopp JB, Nishida T, Takigawa M, Ueno M, Nakamura T, Suzuki H. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice. FASEB J 2003; 17: 268–270. 127. Yokoi H, Mukoyama M, Nagae T, Mori K, Suganami T, Sawai K, Yoshioka T, Koshikawa M, Nishida T, Takigawa M, Sugawara A, Nakao K. Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol 2004; 15: 1430–1440. 128. Okada H, Kikuta T, Kobayashi T, Inoue T, Kanno Y, Takigawa M, Sugaya T, Kopp JB, Suzuki H. Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J Am Soc Nephrol 2005; 16: 133–143. 129. Yokoi H, Mukoyama M, Sugawara A, Mori K, Nagae T, Makino H, Suganami T, Yahata K, Fujinaga Y, Tanaka I, Nakao K. Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis. Am J Physiol Renal Physiol 2002; 282: F933–F942. 130. Tsai TJ, Lin RH, Chang CC, Chen YM, Chen CF, Ko FN, Teng CM. Vasodilator agents modulate rat glomerular mesangial cell growth and collagen synthesis. Nephron 1995; 70: 91–100. 131. Zhang C, Meng X, Zhu Z, Yang X, Deng A. Role of connective tissue growth factor in renal tubular epithelial-myofibroblast transdifferentiation and extracellular matrix accumulation in vitro. Life Sci 2004; 75: 367–379. 132. Gore-Hyer E, Shegogue D, Markiewicz M, Lo S, Hazen-Martin D, Greene EL, Grotendorst G, Trojanowska M. TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol 2002; 283: 706–716. 133. Lin SL, Chen RH, Chen YM, Chiang WC, Lai CF, Wu KD, Tsai TJ. Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol 2005; 16: 2702–2713. 134. Subramanian SV, Polikandriotis JA, Kelm RJ Jr, David JJ, Orosz CG, Strauch AR. Induction of vascular smooth muscle alpha-actin gene transcription in transforming growth factor beta1-activated myofibroblasts mediated by dynamic interplay between the Pur repressor proteins and Sp1/Smad coactivators. Mol BiolCell 2004; 15: 4532–4543. 135. Muchaneta-Kubara EC, el Nahas AM. Myofibroblast phenotypes expression in experimental renal scarring. Nephrol Dial Transplant 1997; 12: 904–915. 136. Rastaldi MP, Ferrario F, Giardino L, Dell'Antonio G, Grillo C, Grillo P, Strutz F, Muller GA, Colasanti G, D'Amico G. Epithelial-mesenchymal transition oftubular epithelial cells in human renal biopsies. Kidney Int 2002; 62: 137–146. 137. Makhluf HA, Stepniakowska J, Hoffman S, Smith E, LeRoy EC, Trojanowska M. IL-4 upregulates tenascin synthesis in scleroderma and healthy skin fibroblasts. J Invest Dermatol 1996; 107: 856–859. 138. Okada H, Ban S, Nagao S, Takahashi H, Suzuki H, Neison EG. Progressive renal fibrosis in murine polycystic kidney disease: an immunohistochemical observation. Kidney Int 2000; 58: 587–597. 139. Wu MJ, Wen MC, Chiu YT, Chiou YY, Shu KH, Tang MJ. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int 2006; 69: 2029–2036. 140. Wolf G, Neilson EG. Molecular mechanisms of tubulointerstitial hypertrophy and hyperplasia. Kidney Int 1991; 39: 401–420. 141. Fine L. The biology of renal hypertrophy. Kidney Int 1986; 29: 619–634. 142. Wolf G, Neilson EG. Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol 1990; 259: F768–F777. 143. Wolf G, Stahl RAK. Angiotensin II-stimulated hypertrophy of LLC-PK1 cells depends on the induction of the cyclin-dependent kinase inhibitor p27Kip1. Kidney Int 1996; 50: 2112–2119. 144. Fogo AB. Mesangial matrix modulation and glomerulosclerosis. Exp Nephrol 1999; 7: 147–159. 145. Rondeau E, Sraer JD, Schleuning WD. The renal plasminogen activating system , in Molecular Nephrology: Kidney Function in Health and Diseases, edited by Schlondorff D, Bonventre JV, New York, Marcel Dekker Inc., 1995, pp 699–715. 146. Eddy AA. Plasminogen activator inhibitor-1 and the kidney. Am J Physiol Renal Physiol 2002; 283: F209–F220. 147. Eitzman DT, Ginsburg D. Of mice and men: The function of plasminogen activator inhibitors (PAIs) in vivo. Adv Exp Med Biol 1997; 425:131–141. 148. Kazes I, Delarue F, Hagege J, Bouzhir-Sima L, Rondeau E, Sraer JD, Nguyen G. Soluble latent membrane-type 1 matrix metalloprotease secreted by human mesangial cells is activated by urokinase. Kidney Int 1998; 54:1976–1984. 149. Baricos WH, Cortez SL, El-Dahr SS, Schnaper HW. ECM degradation by cultured human mesangial cells is mediated by a PA/plasmin/MMP-2 cascade. Kidney Int 1995; 47: 1039–1047. 150. Knudsen BS, Harpel PC, Nachman RL. Plasminogen activator inhibitor is associated with the extracellular matrix of cultured bovine smooth muscle cells. J Clin Invest 1987; 80:1082–1089. 151. Rerolle JP, Hertig A, Nguyen G, Sraer JD, Rondeau EP. Plasminogen activator inhibitor type 1 is a potent target in renal fibrosis. Kidney Int 2000; 58: 1841–1850. 152. Xu Y, Hagege J, Mougenot B, Sraer JD, Rønne E, Rondeau E. Different expression of the plasminogen activation system in renal thrombotic microangiopathy and the normal human kidney. Kidney Int 1996; 50: 2011–2019. 153. Lund LR, Riccio A, Andreasen PA, Nielsen LS, Kristensen P, Laiho M, Saksela O, Blasi F, and Dano K. Transforming growth factor-beta is a strong and fast acting positive regulator of the level of type-1 plasminogen activator inhibitor mRNA in WI-38 human lung fibroblasts. Embo J 1987; 6: 1281–1286. 154. Keeton MR, Curriden SA, Van Zonneveld AJ, Loskutoff DJ. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J Biol Chem 1991; 266: 23048–23052. 155. Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, Schughart K. The mouse Pax2 (1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci USA 1996; 93: 13870–13875. 156. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA , Hogan BM, Fogo A, Brock JW, Inagami T, Ichikawa I. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 1999; 3: 1–10. 157. Friedman J, Hoyer JR, McCormick B, Lewy JE. Congenital unilateral hydronephrosis in the rat. Kidney Int 1979; 15: 567–571. 158. Horton CE Jr, Davisson MT, Jacobs JB, Bernstein GT, Retik AB, Mandell J. Congenital progressive hydronephrosis in mice: A new recessive mutation. J Urol 1988; 140: 1310–1315. 159. Bascands JL, JOOST P. Schanstra JP. Obstructive nephropathy: Insights from genetically engineered animals. Kidney Int 2005; 68: 925–937. 160. Morrissey JJ, Klahr S. Differential effects of ACE and AT1 receptor inhibition on chemoattractant and adhesion molecule synthesis. Am J Physiol 1998; 274: F580–F586. 161. Guo G, Morrissey J, McCracken R, Tolley T, Liapis H, Klahr S. Contribution of angiotensin II and tumor necrosis factor-a to the development of renal fibrosis. Am J Physiol Renal Physiol 2001; 280: F777–F785. 162. Kaneto H, Morrissey J, McCracken R, Reyes A, Klahr S. Enalapril reduces collagen type Ⅳ synthesis and expansion of the interstitium in the obstructed rat kidney. Kidney Int 1994; 45: 1637–1647. 163. Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S. Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 1995; 47: 1285–1294. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23933 | - |
dc.description.abstract | 近年來台灣地區末期腎臟病之盛行率、發生率及死亡率,均不斷攀升,已逐漸與高血壓、糖尿病等慢性病同列為台灣國人之重要疾病。許多不同的腎臟疾病都有可能演變為末期腎臟病,台灣地區則是目前全世界末期腎臟病新生率最高以及盛行率第二的地方。末期腎臟病的最重要特徵為腎臟間質纖維化,而腎臟間質纖維化的特徵為正常的腎臟結構被不正常堆積的細胞外基質蛋白所取代、腎小管萎縮、腎小管擴張和腎絲球硬化。由於大多數末期腎病變的治療方法包括了血液透析、腹膜透析和腎臟移植,這些都所費不貲,且唯有腎臟移植可使患者腎功能恢復到近似正常人。
和厚朴酚(honokiol)是從中國草本植物厚朴所萃取出來的一種物質,具有抗血栓形成、抗焦慮、抗氧化、抗發炎、血管放鬆等等藥理特性。近期的研究也發現其具有抗癌的作用。是個非常具有發展潛力的藥物或保健食品。因此本篇研究想要探討和厚朴酚是否能成為有效預防及治療腎纖維化的藥物。 首先我們先檢測在生物體外和厚朴酚的藥效。利用細胞存活率測定(MTT assay),我們採用10 μM的和厚朴酚及5 ng/mL的轉形生長乙形因子一(TGF-β1)來處理細胞。我們使用的細胞有大鼠近曲小管上皮細胞細胞株NRK-52E、大鼠纖維母細胞細胞株NRK-49F以及由病人檢體得到正常的腎臟部分培養出的纖維母細胞。實驗結果可以發現,TGF-β1可以誘導在細胞的另一個纖維發生因子:結締組織生長因子的表現量上升,同時和厚朴酚具有抑制的效果。另外和厚朴酚也可抑制在NRK-52E中被誘發的上皮間質轉分化以及NRK-49F被誘發的活化反應。而因腎小管上皮間質轉分化以及纖維母細胞活化產生的肌纖維母細胞,其造成的細胞外基質蛋白累積也會被和厚朴酚所抑制住。因此在生物體外的實驗,和厚朴酚是具有減緩腎纖維化特徵的效果。 而後我們採用單側輸尿管阻塞誘發的大鼠腎臟纖維化模式來評估和厚朴酚的療效。有許多抑制腎臟纖維化的藥物都是用這種方法來進行研究。實驗分成四組,分別為:假性單側輸尿管阻塞手術、假性單側輸尿管阻塞手術合併餵食和厚朴酚、單側輸尿管阻塞、單側輸尿管阻塞合併餵食和厚朴酚。和厚朴酚給予劑量為每天個體每公斤給予5毫克,一天餵食兩次。經過手術後兩週犧牲動物。實驗顯示,餵食和厚朴酚並不會影響實驗動物的體重、心跳、血壓、血中尿素氮、肌酸酐、肝指數GPT等生化指標。單側輸尿管阻塞後阻塞側腎臟的腎小管擴大、腎間質體積、腎間質膠原蛋白沉積和α平滑肌肌動蛋白的嚴重程度積分都被和厚朴酚有意義的減少。核糖核酸的分析也顯示和厚朴酚可以有效的降低在單側輸尿管阻塞後阻塞側腎臟細胞外基質蛋白累積,以及降低細胞間黏附因子(ICAM-1)與單核細胞趨化蛋白一(MCP-1)表現。 整體而言,和厚朴酚在生物體外及體內的實驗,都有減緩腎纖維化特徵的表現,因此我們認為,和厚朴酚可能具有能延緩人類腎臟纖維化的療效。 | zh_TW |
dc.description.abstract | In Taiwan, from 1991 to 2000, the prevalence and incidence of the end-stage renal diseases (ESRD) showed an increase in multiple. Many kinds of renal disease possibly develop ESRD. ESRD, hypertension, diabetes, and other chronic diseases are progressively became important diseases that Taiwanese may suffer from. Taiwan holds the highest incidence of ESRD in the world; however, be next to the Japan, the prevalence existed in the second. Almost all forms of kidney diseases that progress to ESRD are characterized by diffuse fibrosis, in which tubulointerstitial fibrosis is considered the most important determinant of progressive renal injury. Renal tubulointerstitial fibrosis is characterized by the accumulation of extracellular matrix (ECM) proteins, tubular dilatation, tubular atrophy and glomerulosclerosis. The most therapies for ESRD are hemodialysis, peritoneal dialysis, and kidney transplantation, and all of them may be a heavily financial load. Moreover, transplant is the only way
to make patients recover similar to ordinary people. Honokiol (HK) is a major bioactive component isolated from the bark of ‘Houpo’ (Magnolia officinalis). HK has several important medicinal uses, such as antithrombotic, anxiolytic, antioxidative, anti-inflammatory, and vasodilative effects. Recent studies showed that HK also has anti-cancer ability. Therefore, HK may be valuably to develop into potential drug or healthy food. So in this study we want to investigate the possible therapeutic effect of HK on ESRD. We first examined the effects of HK in vitro. The dosage we administrated to cells was according to the results of MTT assay: 10 μM HK and 5 ng/mL TGF-β1. We examined these agents in renal cell lines NRK-52E (normal rat kidney proximal tubular epithelial cells) and NRK-49F (normal rat kidney fibroblasts), and primary human renal fibroblasts form normal kidney of patients. Our findings revealed that TGF-β1 induced overexpression of a fibrogenic factor, CTGF, which could be inhibited by HK. HK also blocked TGF-β1-induced epithelial-mesenchymal transdifferentiation (EMT) in NRK-52E and activation in NRK-49F. ECM synthesis and accumulation resulted from myofibroblasts, which came from EMT in tubular epithelial cells and activation in fibroblasts, and cell proliferation could be also blocked by HK. Hence, HK has ability on attenuating renal interstitial fibrosis in vitro. On the other hand, we examined the effects of HK on unilateral ureteral obstruction (UUO) animal model, a widely used model for progressive renal fibrosis that is independent of hypertension or systemic immune disease. In experimental sets, the rats were divided into four groups: (1) SHM, the rats underwent sham operations and were treated with vehicle; (2) SHM/HK, the rats underwent sham operations and were treated with HK; (3) UUO, the rats underwent UUO and were treated with vehicle; (4) UUO/HK, the rats underwent UUO and were treated with HK. The dosage we treated to animals was 5 mg/kg/day and administrated twice per day. Rats were sacrificed in 14 days after operation. We found that HK did not affect body weight, mean blood pressure, heartbeat rate, and the level of BUN, creatinine, and GPT in each group. Moreover, HK significantly attenuated tubular atrophy, interstitium, interstitial collagen deposition and α-smooth muscle actin (α-SMA) expression. Northern blot analyses for mRNA level also showed that HK decreased ECM, ICAM-1, and MCP-1 mRNA expression in the kidneys of UUO rats. In conclusion, HK is capable of attenuating renal fibrosis both in vitro and in vivo. HK may possess curative effects on postponing renal fibrosis in human. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:12:43Z (GMT). No. of bitstreams: 1 ntu-95-R93447006-1.pdf: 1488817 bytes, checksum: 933f25b7fae038f87db9b1b8b6154d6a (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | ABBREVIATIONS………………………………………………………1
中文摘要………………………………………………………………………2 ABSTRACTS……………………………………………………………4 CHAPTER I INTRODUCTION………………………………………………………6 1.End-Stage Renal Disease……………………………………6 2.Tubulointerstitial Fibrosis………………………………8 3.The pathological mechanism of Renal Fibrogenesis………………………………………………………9 4.Epithelial-Mesenchymal Transdifferentiation…………13 5.Honokiol……………………………………………………15 6.Specific Aims………………………………………………16 CHAPTER II MATERIALS AND METHODS………………………17 1.Reagents and Antibodies………………………………17 2.Animals and Experimental UUO………………………17 3.Cell Culture………………………………………………18 4.Primary Human Fibroblast Culture………………………19 5.RNA Extraction and Northern Blot Analyses…………………19 6.Reverse Transcriptase-Polymerase Chain Reaction………21 7.Protein Extraction and Western Blot Analyses…………21 8.Renal Pathology………………………………………22 9.Cell Viability Assay…………………………………………22 10.Statistical Analyses……………………………………………23 CHAPTER III RESULTS…………………………………………………24 1.Effects of HK and TGF-β on the viability of Cell Line NRK-52E and NRK-49F, and Primary Human Fibroblasts………24 2.HK Inhibited Profibrogenic Factor Expression in Renal Cells Stimulated by TGF-β1………………………24 3.HK Inhibited Activation of Renal Interstitial Fibroblasts and EMT Process in Proximal Epithelial Cells……………………………………………………………25 4.HK Blocked ECM Accumulation in Renal Cells Stimulated by TGF-β1……………………………………………………………25 5.HK Attenuated the Histological Changes in the Obstructed Kidney Induced by UUO…………………………………………26 6.HK Decreased the Expression of α-SMA, CTGF, and Adhesion Molecular and Chemokine Genes in the Obstructed Kidney Induced by UUO……………………………………………………27 7.HK Reduced the Accumulation of ECM in the Obstructed Kidney Induced by UUO…………………………………………27 CHAPTER IV DISCUSSION……………………………………………29 FIGURES AND TABLES………………………………………………35 REFERENCES…………………………………………………57 | |
dc.language.iso | en | |
dc.title | 和厚朴酚於細胞與動物模式中減緩腎纖維化之探討 | zh_TW |
dc.title | The Effects of Honokiol on Attenuating Renal Fibrosis: In vitro and In vivo | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭水銀,楊榮森,許美玲 | |
dc.subject.keyword | 腎纖維化,上皮間質轉分化,單側輸尿管阻塞,生長乙形因子,和厚朴酚, | zh_TW |
dc.subject.keyword | renal fibrosis,epithelial-mesenchymal transdifferentiation,unilateral ureteral obstruction,transforming growth factor-β,honokiol., | en |
dc.relation.page | 68 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2006-07-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。