請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23907完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾四恭(Szu-Kung Tseng) | |
| dc.contributor.author | Wei-Chih Chen | en |
| dc.contributor.author | 陳韋志 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:12:21Z | - |
| dc.date.copyright | 2006-07-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-19 | |
| dc.identifier.citation | 1. Svetoslava G. Todorova ,Donald I. Siegel ,Andria M. Costello.,2005. Microbial Fe(III) reduction in a minerotrophic wetland-geochemical controls and involvement in organic matter decomposition. Applied Geochemistry. 20:1120-1130.
2. Brice M. R. Appenzeller, Carolina Yanez, Frederic Jorand, and Jean-Claude Block.,2005.Advantage provide by iron for Escherichia coli growth and cultivability in drinking water. Applied and environment microbiology. 71.9.5621-5623. 3. J. S. Potekhina•N. G. Sherisheva•L. P . Povetkina•A. P. Pospelov•T. A. Rakitina•F. Warnecke•G. Gottschalk.,1999. Role of microorganisms in corrosion inhibition of metal in aquatic habitats. Appl Microbiol Biotechnol. 50:639-646. 4. Derek R. Lovley and Elizabeth J. P. Phillips., Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Applied and environment microbiology. 987.11. 2636-2641. 5. G. M. King and Meredith A. Garey., 1999. Ferric iron reduction by Bacteria associated with the roots of freshwater and marine macrophytes. Applied and environment microbiology.65.10.4393-4398. 6. Ralf Cord-Ruwisch and Friedrich Widdel.,1986. Corroding iron as a hydrogen source for sulfate reduction in growing cultures of sulphate-reducing bacteria. Appl Microbiol Biotechnol. 25:169-174. 7. F. Sarioglu, R. Javaherdashti & N. Aksoz.,1997. Corrosion of a drilling pipe steel in an environment containing sulphate-reducing bacteria. Int. J. Pres. Ves. & Piping. 73:127-131 8 Susan Glasauer, Peter G. Weidler, Sean Langley, and Terry J. Beveridge., 2002. Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochimica et Cosmochimica Acta. 67.7.1277-1288 9. S. Da Silva, R. Basseguy, A. Bergel., 2003. Electron transfer between hydrogenase and 316L stainless steel: identification of a hydrogenase-catalyzed cathodic reaction in anaerobic mic. Journal of Electroanalytical Chemistry. 561:93-102. 10. Iwona B Beech and Jan Sunner.,2004. Biocorrosion:towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology. 15:181-186. 11. In-Chieh Chen, Cyrus Ghajar, Jae Kang & Asher Sinensky., 2001. Biologically induced corrosion: Electrochemical Aspects. Materials Science 112: corrosion. 12. Deb P. Jaisi, Ravi K. Kukkadapu, Dennis D. Eberl, and Hailiang Dong., 2005. Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite. Geochimica et Cosmochimica Acta. 69.23.5429-5440 13. Singley, J. E., B. A. Beaydet, P. H. Markey, D. W. DeBerry, J. R. Kidwell, and D. A. Malish. 1985. Corrosion prevention and comtrol in water treatment and supply system. Noyes Publications, NJ, USA. 14. Teske, A., N. B. Ramsing, K. Habicht, M. Fukui, J. Kuver, B. B. Jorgensen, and Y. Cohen. 1998. Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Appl. and Environmen. Microbiol. Aug: 2943-2951. 15. Angell, P., and K. Urbanic. 2000. Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corrosion Science. 42: 897-912. 16. Borresen, A. L., E. Hovig, and A. Brogger. 1988. Detection of base mutations in genomic DNA using denaturing gradient gel electrophoresis (DGGE) followed by transfer and hybridization with gene-spesific probe. Mutat.Res. 202: 77-83. 17. Campbell, L. L., and J. R. Postgate. 1965. Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29: 63-359. 18. Caumette, P. 1993. Ecology and physiology og phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia. 49: 473-481. 19. Debra, J. L., H. L. Jenter, J. D. Coates, E. J. P. Phillips, T. M. Schmidt, and D. R. Lovley. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. of Bacteriology. Apr: 2402-2408. 20. Gaines, R. H. 1910. Bacterial activity as a corrosion influence in the soil. J.Eng. Ind. Chem. 2: 123-133. 21. Hector, F. Castro, Norris H. Williams, and Andrew Ogram. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiology Ecology. 31:1-9. 22. Hernandez, G., V. Kucera, D. Thierry, A.Pedersen. 1994. Corrosion inhibition of steel by bacteria. Corrosion. 50: 603-608. 118 23. Jones, D. A. 1996. Principles and prevention of corrosion. Prentice Hall, HJ, USA. 24. Kleikemper, J., M. H. Schroth, W. V. Sigler, M. Schmucki, S. M. Bernasconi, and J. Zeyer. 2002. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. And Enviro. Microbiol. Apr. 1516-1523. 25. Lovley, D. R., E. E. Roden, E. J. P. Phillips, and J. C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113: 41-53. 26. Muyzer, G., T. Brinkhoff, U. Nubel, C. Sontegoeds, H. Schofer, and C. Wawer. 1997. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, p.1-27. In A. D. L. Akkermans, J. D. van Elsae, and F. J. de Bruijn (ed.), Molecular microbial ecology manual, 3rd ed. Kluwer Academic Publishers, Dordrecht, The Netherlands. 27. Postgate, J. R. 1984. The sulfate-reducing bacteria, 2ed. Cambridge, University press. 28. Lovely, D. R. and D. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54:1472-1480. 29. Lovley, D. R., E. E. Roden, E. J. P. Phillips, and J. C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113: 41-53. 30. Lovley, D. R. 1995(a). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol.14: 85-93. 31. Lovley, D. R. 1995(b). Microbial reduction of iron, manganese, and other metals. Adv. Agron. 54: 175-231. 32. Odom, J. M. 1990. Industrial and environmental concerns with sulfatereducing bacteria. ASM News 56: 473-476. 33. Postgate, J. R., and L. L. Campbell. 1966. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30: 38-732. 34. Langelier, W. F. 1936. Chemical equilbra in water treatment. J. AWWA. 38: 169. 35. Little, B. P. Wagner and F. Mansfeld. 1991. Microbiologically influnced corrosion of metals and alloys. Inter. Metals. Reviews. 36: 253-272. 36. Lovley, D. R. 1995(a). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol. 14: 85-93. 37. Schmalenberger, A., F. Schwieger and C. C. Tebbe. 2001. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-base microbial community analyses and genetic profiling. Appl. Environ. Microbiol. 67(8): 3557-3563. 38. Shreir, L. L. 1976. Corrosin. Butterworth & Co LTD, London. 39. Stumm, W., and J. J. Morgan. 1981. Aquatic Chemistr., John Wiley & Sons, New York 40. Alexander, M. 1977. Introduction to soil microbiology. John Wiley & Sons , New York. 41. Angell, P., and K. Urbanic. 2000. Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corrosion Science. 42: 897-912. 42. Canfield, D. E., and D. J. DeMarias. 1991. Aerobic sulfate reduction in microbial mats. Science. 251: 1471-1473. 43. Devereux, R., M. Delaney, F. Widdel, and D. A. Stahl. 1989. Natural relationships among sulfate-reducing eubacteria. EPA/600/J-89/424. J. Bacteriol. 171(12):6689-6695. 44. Farquhar, G. B. 1993. A review of trends in MIC. Mater. Perform. 1:53-55. 45. Fontana, M. G.. 1986. In Corrosion Engineering, 3rd ed. McGraw-Hill, New York, 28-31, 39-152. 46. 左景伊, 1985, 應力腐蝕破裂, 西安交通大學出版社, 陝西西安. 47. 何東恒, 1994, 溶解二價鐵及三價鐵測定方法之建立及其在自然水體之應用, 國立台灣大學海洋研究所碩士論文. 48. 柯賢文, 1995, 腐蝕及其防制, 全華科技出版社, 台北. 49. 張文亮, 1999, 台灣地區地下水井體維護與管理技術, 經濟部水資源局. 50. 張育傑, 2003, 觀測井腐蝕改善之評估與規劃, 經濟部水資源局. 51. 張晉峰, 1999, 曾文溪底泥中硫酸還原菌的分離鑑定及菌群分佈的探討, 碩士論文. 國立海洋大學海洋生物研究所, 基隆. 52. 劉富雄(編譯), 1999, 防蝕技術, 全華科技圖書股份有限公司. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23907 | - |
| dc.description.abstract | 本研究目的為利用添加電子接受者Fe3+於一硫還原菌優勢存在環境中之方法,藉此分析反應槽在此情形下之水質、菌相及腐蝕度之變化,並探討此環境下鐵片腐蝕之影響。
根據水質分析結果顯示,添加Fe3+於一硫還原反應為優勢電子接受者程序中,當水體中總有機碳量足夠時,鐵還原反應及硫還原反應同時存在進行,且並沒有相互抑制情形發生;而當水體中總有機碳量缺乏時,則可以發現硫還原反應及鐵還原反應互相影響;另外Fe3+供應者型態之不同亦影響鐵還原菌之鐵還原能力,由水質分析結果發現檸檬酸鐵較氯化鐵易受鐵還原菌所利用。 根據菌相及腐蝕度分析結果顯示,當添加檸檬酸鐵後,菌相中明顯出現具鐵還原能力之化學異營菌E.coli k12菌株,且為優勢菌種;而改以氯化鐵作為三價鐵供給者後,則發現硫還原菌在水體中之比例則上升,因此推論三價鐵型態亦影響菌相之變化。添加Fe3+以後發現水體腐蝕電流下降許多,且與水中溶解性硫化物濃度具有正相關,表示水中硫化物濃度越低,造成金屬腐蝕之影響亦隨之降低,故添加Fe3+的確對腐蝕抑制具有效果。但由鐵片重量法腐蝕分析顯示,鐵片之放置位置不同造成腐蝕度皆有差異,主要推測與鐵片上生物膜及添加Fe3+後進流基質pH值之變化有相當關係,但由一僅鐵還原菌存在之環境下作鐵片重量腐蝕分析顯示,當水體中優勢存在鐵還原菌環境下,鐵片之腐蝕度是明顯低於含硫還原菌優勢存在之環境下,因此證實利用鐵還原反應來抑制腐蝕是具有效果之方法。 | zh_TW |
| dc.description.abstract | This study is to investigate the effects for adding Fe(Ⅲ) in an SRB-enriched anaerobic bioreactor, which caused the variations of the water quality, microbial communities and corrosion rates. The influence of the mild steel in this situation is also evaluated.
The results suggest that addition of Fe(Ⅲ) compound to the reactor in which sulfate was the predominant terminal electron-acceptor, when the concentrations of total organic compound (TOC) are excess, sulfate reducing process and iron reducing process occur simultaneously. When TOC are limited in that anaerobic bioreactor, sulfate reducing process and iron reducing process were compete with each other. The magnitude of reduction for Fe(Ⅲ) is depended on the kinds of the Fe(Ⅲ)-contained compounds. The results suggest that ferric citrate is more available than ferric chloride for iron-reducing bacteria (IRB) under these conditions. While the ferric citrate was added to the reactor, the E.coli k12 which possessed the iron-reduced ability is occurred and become the predominant bacteria. However when the Fe(Ⅲ) source is replaced by FeCl3 ,the percentage of SRB is increased among the microbial community. It infers that the variations of microbial communities were influenced by the various Fe(Ⅲ) forms. After adding Fe(Ⅲ), it was suggest that corrosion currents decreased and was positive proportion to dissolvable sulfide concentration in the reactor. It shows that the corrosion rates of mild steel coupons and the dissolved sulfide concentration were decreased, so it was effective for inhibiting SRB-induced corrosion. But the results of weight loss tests show that the corrosion rates of iron coupons were not agree the results on the Tafel tests. It inferred that the weight-loss was mainly related with both the biofilm formed on the mild steel and the pH of the influent substrate. The results of weight-loss tests show that the coupon corrosion under the condition which IRB predominant was less than under the condition which SRB predominant. It suggested that the iron reducing reaction can be an effective method for inhibiting SRB-induced biocorrosion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:12:21Z (GMT). No. of bitstreams: 1 ntu-95-R93541113-1.pdf: 16437926 bytes, checksum: 60b7ad46ec7e03c1ff3153b384f07840 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
第一章 前言 1 1.1 研究緣起 1 1.2 研究動機 2 1.3 研究內容 3 第二章 文獻回顧 5 2.1 腐蝕機制 5 2.1.1 腐蝕動力學 5 2.1.2 電化學腐蝕 7 2.1.3 生物腐蝕 7 2.2 影響腐蝕之環境因子 10 2.2.1 pH值 10 2.2.2 硫化物 10 2.2.3 氯離子 11 2.3 腐蝕抑制機制 12 2.3.1 化學方法抑制腐蝕 12 2.3.2 非化學性方法抑制腐蝕 12 2.4 硫酸鹽還原菌(sulfate reducing bacteria) 15 2.4.1 生理特性 15 2.4.2 陰極去極化反應 15 2.4.3 硫酸還原菌生長特性 16 2.5 鐵還原菌(iron reducing bacteria) 17 2.5.1 鐵還原菌之分類 18 2.5.2 鐵還原機制 19 2.5.3 鐵化合物型態與鐵還原菌利用率之關係 19 2.6 硫酸鹽還原菌與鐵還原菌之競爭機制 21 2.6.1 硫還原菌與鐵還原菌與鐵片之反應機制 22 2.7分子技術應用於菌相分析 24 2.7.1 分子生物技術分析菌相 24 2.7.2 DNA萃取 24 2.7.3 電泳分析 24 2.7.4 聚合酶鏈鎖反應 25 2.7.5 基因轉殖(cloning) 26 2.7.6 DGGE 26 2.7.7 DNA定序 27 第三章 實驗材料與方法 29 3.1研究內容 29 3.2 連續式反應槽之試驗 30 3.2.1 污泥來源 30 3.2.2 反應槽設計 30 3.2.3 反應槽操作程序 31 3.2.4 試片之設置 32 3.3 批次反應實驗方法 34 3.3.1 E.coli 之培養 34 3.3.2 批次試驗操作程序 34 3.4 檢測分析方法 36 3.4.1 水質分析項目 36 3.4.2 生物相分析項目 39 3.4.3 腐蝕相分析項目 47 第四章 結果與討論 51 4.1 連續流反應槽之分析結果 51 4.1.1 延續前一年度反應槽之操作(phase1) 52 4.1.2 檸檬酸鐵添加試驗(Phase2) 56 4.1.3 以兩股進流控制TOC 試驗(Phase3) 60 4.1.4 控制TOC 試驗(Phase4) 64 4.1.5 以FeCl3 作為Fe3+來源,不同碳源下之還原反應試驗(phase5 and 68 phase6) 68 4.1.6 限制進流TOC 試驗 75 4.2 連續流反應槽之菌相分析 79 4.2.1 Phase1 試驗階段之菌相分析 79 4.2.2 Phase4 試驗階段之菌相分析 81 4.2.3 Phase5 試驗階段菌相分析 82 4.2.4 Phase6 試驗階段之菌相分析 83 4.2.5 Phase7 試驗階段之菌相分析 84 4.2.6 各階段菌相綜合比較 85 4.3 菌相及水質條件整合性分析 88 4.3.1 TOC 利用率之貢獻 88 4.3.2 鹼度產生量之貢獻 90 4.3.3 硫化物與腐蝕電流之關係 93 4.4 重量法腐蝕度、SEM 腐蝕分析 94 4.4.1 Phase4 試驗階段之鐵片腐蝕度分析 94 4.4.2 Phase5 試驗階段之鐵片腐蝕度分析 95 4.4.3 Phase6 試驗階段之鐵片腐蝕度分析 95 4.4.4 Phase7 試驗階段之鐵片腐蝕度分析 96 4.5 僅以三價鐵作為唯一電子接受者之連續流試驗 100 4.5.1 水質項目分析 100 4.5.2 腐蝕度分析 101 4.5.3 菌相分析 105 4.6 批次試驗 107 4.6.1 檸檬酸鐵、檸檬酸與氯化鐵之批次試驗 107 4.6.2 乳酸與硫酸鹽批次試驗 108 4.6.3 批次重量法腐蝕度分析 108 第五章 結論與建議 113 5.1 結論 113 5.2 建議 115 參考文獻 116 | |
| dc.language.iso | zh-TW | |
| dc.subject | 厭氧生物腐蝕 | zh_TW |
| dc.subject | 硫酸鹽還菌 | zh_TW |
| dc.subject | 鐵還原菌 | zh_TW |
| dc.subject | sulfate-reducing bacteria | en |
| dc.subject | anaerobic biocorrosion | en |
| dc.subject | iron-reducing bacteria | en |
| dc.title | 添加Fe(Ⅲ)抑制厭氧生物腐蝕之研究 | zh_TW |
| dc.title | Inhibiting anaerobic biocorrosion by adding Fe(Ⅲ) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳先琪(Shian-Chee Wu),李志源,張育傑(Yu-Jie Chang) | |
| dc.subject.keyword | 硫酸鹽還菌,鐵還原菌,厭氧生物腐蝕, | zh_TW |
| dc.subject.keyword | sulfate-reducing bacteria,iron-reducing bacteria,anaerobic biocorrosion, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2006-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 16.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
