Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23901
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞琳
dc.contributor.authorXing-Xiang Liuen
dc.contributor.author劉信翔zh_TW
dc.date.accessioned2021-06-08T05:12:16Z-
dc.date.copyright2006-07-31
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation1. Maier, S.A. and H.A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys., 2005. 98: p. 011101.
2. Padeletti, G. and P. Fermo, How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period. Appl. Phys. A, 2003. 76: p. 515.
3. Mishchenko, M.I., J.W. Hovenier, and L.D. Travis, Light Scattering by Nanspherical Particles. 2000: Academic Press.
4. Wood, R.W., Philos. Mag., 1902. 4: p. 396.
5. Fano, U., J. Opt. Soc. Am, 1941. 31: p. 213.
6. Ritchie, R.H., Plasma Losses by Fast Electrons in Thin Films. Phys. Rev., 1957. 106(5): p. 874.
7. Powell, C.J. and J.B. Swan, Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium. Phys. Rev. , 1960. 118: p. 640-643.
8. Rendell, R.W., D.J. Scalapino, and B. Muehlschlegel, Role of Local Plasmon Modes in Light Emission from Small-Particle Tunnel Junctions. Phys. Rev. Lett., 1978. 41(25): p. 1746.
9. Bohren, C.F. and D.R. Huffman, Absorption and Scattering of Light by Small Particles. 1983: Wiley, New York.
10. Kraus, W.A. and G.C. Schatz, Plasmon resonance broadening in small metal particles. J. Chem. Phys., 1983. 79(12): p. 6130.
11. Kreibig, U. and L. Genzel, Optical absorption of small metallic particles. Surf. Sci., 1985. 156: p. 678-700.
12. Kreibig, U., B. Schmitz, and H.D. Breuer, Separation of plasmon-polariton modes of small metal particles. Phys. Rev. B, 1987. 36(9): p. 5027.
13. Quinten, M. and U. Kreibig, Absorption and elastic scattering of light by particle aggregates. Appl. Opt., 1993. 32(30): p. 6173.
14. Quinten, M., Optical Effects Associated with Aggregates of Clusters. J. Clust. Sci., 1999. 10(2): p. 319.
15. Quinten, M., et al., Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett., 1998. 23: p. 1331.
16. Warmack, R.T. and S.L. Humphrey, Observation of two surface-plasmon modes on gold particles. Phys. Rev. B, 1986. 34(4): p. 2246.
17. Krenn, J.R., et al., Direct observation of localized surface plasmon coupling. Phys. Rev. B, 1999. 60(7): p. 5029.
18. Kottmann, J.P. and O.J.F. Martin, Spectral response of plasmon resonant nanoparticles with a non-regular shape. Opt. Express, 2000. 6: p. 213.
19. Kottmann, J.o.P. and O.J.F. Martin, Plasmon resonant coupling in metallic nanowires. Opt. Express, 2001. 8(12): p. 655.
20. Kottmann, J.P. and O.J.F. Martin, Retardation-induced plasmon resonances in coupled nanoparticles. Opt. Lett., 2001. 26(14): p. 1096.
21. Kottmann, J.P. and O.J.F. Martin, Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B, 2001. 64.
22. Rockstuhl, C., M. Salt, and H. Herzig, Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles. J. Opt. Soc. Am. A, 2003. 20(10): p. 1969.
23. Rockstuhl, C., M.G. Salt, and H.P. Herzig, Analyzing the scattering properties of coupled metallic nanoparticles. J. Opt. Soc. Am. A, 2004. 21(9): p. 1761.
24. Kelly, K., et al., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B, 2003. 107: p. 668.
25. Kelly, K.L., A.A. Lazarides, and G.C. Schatz, Computational electromagnetics of metal nanoparticles and their aggregates. Computing in Science and Engineering, 2001. 3: p. 67.
26. Su, K.-H., et al., Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Lett., 2003. 3: p. 1087.
27. Haes, A.J. and R.P.V. Dutne, A Nanoscale Optical Biosensor: Sestivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc. , 2002. 124: p. 10596-10604.
28. Kneipp, K., et al., Single Molecular Detection Using Surface-Enhanced Raman Scattering Phys. Rev. Lett., 1997. 78(9): p. 1667.
29. Garcia-Vidal, F.J. and J.B. Pendry, Collective Theory for Surface Enhanced Raman Scattering. Phys. Rev. Lett., 1996. 77(6): p. 1163.
30. Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275: p. 1102.
31. Tominaga, J., et al., Local plasmon photonic transistor. Appl. Phys. Lett., 2001. 78: p. 2417.
32. Yariv, A., et al., Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett., 1999. 24(11): p. 711.
33. Brongersma, M.L., J.W. Hartman, and H.A. Atwater, Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B, 2000. 62(24).
34. Maier, S.A., P.G. Kik, and H.A. Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl. Phys. Lett., 2002. 81(9): p. 1714.
35. Maier, S.A., et al., Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit. Proc. of SPIE, 2002. 4810.
36. Maier, B.S.A., et al., Plasmonics -- A Route to Nanoscale Optical Devices. Adv. Master., 2001. 13(19): p. 1501.
37. Tominaga, J., T. Nakano, and N. Atoda, An approach for recording and readout beyond the diffraction limit with an Sb thin film. Appl. Phys. Lett., 1998. 73(15): p. 2078.
38. Kawata, S., M. Ohtsu, and M. Irie, Nano-Optics. 2002: Springer-Verlag Berlin Heidelberg New York.
39. Martin, O.J.F., Surface plasmon illumination scheme for contact lithography beyond the diffraction limit. Microelectroic. Engineering, 2003. 67-68: p. 24-30.
40. Chen, W.P. and J.M. Chen, Use of surface plasma waves for determination fo the thickness and optical constants of thin metallic films. J. Opt. Soc. Am, 1981. 71(2): p. 189.
41. Bruijn, H.E.D., R.P.H. Kooyman, and J. Greve, Determination of dielectric permittivity and thickness of a metal layer form a surface plasmon resonance experiment. Appl. opt., 1990. 29(13): p. 1974.
42. Soennichsen, C., et al., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature, 2005. 23: p. 741.
43. Hecht, E., Optics. 4th ed. 2002: Addison-Wesley.
44. Kawata, S., Near-Field Optics and Surface Plasmon Polaritons. 2001: Springer.
45. Raether, H., Surface plasmon. 1988: Springer-Verlag.
46. Peyghambarian, N., S.W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics. 1993: Prentice-Hall.
47. Mackowski, D.W., Analysis of radiative scattering for multiple sphere configurations. Proc. R. Soc. London Ser. A, 1991. 433(1889): p. 599.
48. Friedman, B. and J. Russek, Addition Theorems for Spherical Waves. Q. Appl. Math., 1954. 12: p. 13.
49. Stein, S., Addition theorem for spherical wave functions. Quart. Appl. Math., 1961. 19: p. 15.
50. Abramovitz, M. and I.e. Stegun, Handbook of mathematic
functions with form.ulas, graphs, and mathematical tables. 1972: Dover.
51. Sonnichsen, C., et al., Plasmon resonances in large noble-metal clusters. New J. Phys., 2002. 4.
52. Johnson, P.B. and R.W. Christy, Optical Constants of the Noble Metals. Phys. Rev. B, 1972. 6(12): p. 4370.
53. Ashcroft, N.W. and N.D. Mermin, Solid State Physics. 1976: Thomson Learning.
54. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters. 1995: Springer-Verlag Berlin Heidelberg.
55. Pinchuk, A., G.v. Plessen, and U. Kreibig, Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D: Appl. Phys., 2004. 37: p. 3133.
56. Rechberger, W., et al., Optical properties of two interacting gold nanoparticles. Opt. Commun., 2003. 220: p. 137.
57. Ohtsu, M. and K. Kobayashi, Optical Near Field. 2004: Springer-Verlag.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23901-
dc.description.abstract本文介紹表面電漿之基本電磁理論,並使用散射矩陣法探討三維奈米金屬球中的表面電漿共振行為。我們針對單顆、二顆以及鏈狀金屬球陣列所組成的系統,討論表面電漿的震盪耦合現象。在材料參數方面,探討由理論模型以及實驗結果所得到的介電常數對表面電漿的影響。由模擬結果,可以得到表面電漿共振波長隨著金屬球尺寸及排列間距有所變化。除此之外,電磁波的極化決定了電漿的振動方向,進而影響了電場的增強效應。最後,在鏈狀陣列上觀察到電磁波能量在陣列上傳遞,進而達到波導的功能。zh_TW
dc.description.abstractIn this thesis we theoretically investigate the surface plasmon resonance in metal nanoparticles. We use the multiple scattering method to simulate the electromagnetc propagation and surface plasmon behaviors in particle systems. By this method, the fundamental resonance modes can be clearly resolved. We consider the permittivity functions obtained from the Drude model, experimental results and modification of the size effect. The simulations show that the surface plasmon resonance is greatly influenced by the particle size and arrangement. The enormous field enhancement due to surface plasmon coupling between particles is reported. The interparticle distance and the wave polarization are responsible for the large field magnitude. Finally, we study the plasmon resonance for chains of particles aligned in the polarization and propagating directions. We show the propagation of electromagnetic energy in the chains. These results may improve the development of plasmonic devices.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:12:16Z (GMT). No. of bitstreams: 1
ntu-95-R93543013-1.pdf: 4842717 bytes, checksum: b214a8b2dd677d3a2d3f3eea54544ee7 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
摘要 i
Abstract ii
Contents iii
Chapter 1 Introduction 1
1.1 Development of surface plasmon and Motives 4
1.2 Road Map through This Thesis 12
Chapter 2 Fundamental Electromagnetic Theory 14
2.1 Basic Formulation 15
2.1.1Maxwell’s Equations 15
2.1.2 Boundary Conditions 17
2.1.3 Scattering and Absorption 20
2.2 Optics in Solid 22
2.2.1 Dielectric 22
2.2.2 Metal 26
2.2.3 Size Effect 28
2.3 Surface Plasmons 31
Chapter 3 Formulations 36
3.1 Absorption and Scattering by a Sphere 39
3.1.1 Generating Functions 39
3.1.2 Vector Spherical Harmonics 42
3.1.3 Expansion of a Plane Wave in Vector Spherical Harmonics 48
3.2 Addition Theorem and Many-Sphere System 56
3.3 Cross Sections 63
Chapter 4 One-Sphere Systems 69
4.0 Convergence of Computation 70
4.1 Ideal and Reality-- Drude Model and Experiment Cases 71
4.2 Size Effect 78
4.3 Resonance in different particles sizes 79
Chapter 5 Two-Sphere Systems 82
5.0 Convergence Tests 83
5.1 Pairs in polarized direction 86
5.2 Pairs in propagating direction 94
Chapter 6 Many-sphere systems 101
6.1 Particle chain in polarization direction 102
6.2 Particle chain in propagating direction 120
Chapter 7 Conclusion and Outlook 130
References 133
dc.language.isoen
dc.title以散射矩陣法研究三維奈米金屬球之表面電漿共振zh_TW
dc.titleA Study of Surface plasmon Resonance on 3D Metal Spherical Nanoparticles by Multiple Scattering Matrix Methoden
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor張建成
dc.contributor.oralexamcommittee蘇正瑜,藍永強,欒丕綱
dc.subject.keyword表面電漿,電漿共振,散射矩陣法,zh_TW
dc.subject.keywordsurface plasmon resonance,Mie theory,addition theorem,en
dc.relation.page136
dc.rights.note未授權
dc.date.accepted2006-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
4.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved