Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖秀娟
dc.contributor.authorYueh-Fen Lien
dc.contributor.author李悅芬zh_TW
dc.date.accessioned2021-06-08T05:11:47Z-
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citationAbernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C, and Waalkes M. 1999. Arsenic: hear effects, mechanisms of actions, and research issues. Environ Health Perspect 107: 593-7.
Al-Arabi SA, Adolfsson-Erici M, Waagbo R, Ali MS, and Goksoyr A. 2005. Contaminant accumulation and biomarker responses in caged fish exposed to effluents from anthropogenic sources in the Karnaphuly River, Bangladesh. Environ Toxicol Chem 24(8): 1968-78.
Albores A, Koropatnick J, Cherian MG, and Zelazowski AJ. 1992. Arsenic induces and enhances rat hepatic metallothionein production in vivo. Chem Biol Interact 85(2-3): 127-40.
Allen T and Rana SVS. 2003. Effect of arsenic (AsIII) on glutathione-dependent enzymes in liver and kidney of the freshwater fish Channa punctatus. Biol Trace Element Res 100: 39-48.
Allen T, Singhal R, and Rana SVS. 2003. Resistance to oxidative stress in a freshwater fish Channa punctatus after exposure to inorganic arsenic. Biol Trace Element Res 98: 63-72.
Almeida JA, Diniz YS, Marques SF, Faine LA, Ribas BO, Burneiko RC, and Novelli EL. 2002. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environ Int 27(8): 673-9.
Applegate BM, Kehrmeyer SR, and Sayler GS. 1998. A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64(7): 2730-5.
Assinder SJ and Williams PA. 1990. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31: 1-69.
Barchowsky A, Dudek EJ, Treadwell MD, and Wetterhahn, KE. 1996. Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells. Free Radical Biol Med 21: 783-90.
Barchowsky A, Roussel RR, Klei LR, James PE, Ganju N, Smith KR, and Dudek, EJ. 1999. Low levels of arsenic trioxide stimulate proliferative signals in primary vascular cells without activating stress effector pathways. Toxicol Appl Pharmacol 159: 65-75.
Barnes JA, Collins BW, Cis DJ, and Allen JW. 2002. Effects of heat shock protein 70 (HSP70) on arsenite-induced genotoxicity. Environ Mol Mutagen 40: 236-42.
Basu A, Mahata J, Gupta S, and Giri AK. 2001. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 488: 171-94.
Bates MN, Smith AH, and Hopenhayn-Rich C. 1992. Arsenic ingestion and internal cancers: a review. Am J Epidemiol 135:462-76.
Bebianno MJ, Geret F, Hoarau P, Serafim MA, Coelho MR, Gnassia-Barelli M, and Romeo M. 2004. Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers 9(4-5): 305-30.
Bengtson DA and Henshel DS. 1996. Environmental toxicology and risk assessment: Biomarkers and risk assessment-Fifth volume. ASTM, STP 1306, West Conshohocken, PA. 476.
Bertoni G, Marques S, and de Lorenzo V. 1998. Activation of the toluene-responsive regulator XylR causes a transcriptional switch between sigma 54 and sigma 70 promoters at the divergent Pr/Ps region of the TOL plasmid. Mol Microbiol 27: 651-9.
Beyersmann D. 2002. Effects of carcinogenic metals on gene expression. Toxicol Lett 127(1-3): 63-8.
Bhattacharya A and Bhattacharya S. 2005. Induction of oxidative stress by arsenic in Clarias batrachus: involvement of peroxisomes. Ecotoxicol Environ Safety Article in press.
Bukau B and Horwich AL. 1998. The hsp70 and hsp60 chaperone machines. Cell 92: 351-66.
Casavant NC, Thompson D, Beattie GA, Phillips GJ, and Halverson LJ. 2003. Use of a site-specific recombination-based biosensor for detecting bioavailable toluene and related compounds on roots. Environ Microbiol 5(4): 238-49.
Chalfie M, Tu Y, Euskirchen G, Ward WW, and Prasher DC. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802-5.
Chan PC and Huff J. 1997. Arsenic carcinogenesis in animals and in humans. Mechanistic, experimental and epidemiological evidence. Environ Carcinogen Ecotoxicol Rev C15: 83-122.
Chen YC, Lin-Shiau SY, and Lin JK. 1998. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177: 324-33.
Cheung AP, Lam TH, and Chan KM. 2004. Regulation of Tilapia metallothionein gene expression by heavy metal ions. Mar Environ Res 58(2-5): 389-94.
Chidambaram N. 1992. Copper distribution potential in Perna viridis. Ind J Environ Protect 12: 359-65.
Coombs TL and George SG. 1978. Mechanisms of immobilization and detoxification of metals in marine organisms. 12th European Symposium on Marine Biology, America 2: 179-89.
Csanaky I and Gregus Z. 2005. Role of glutathione in reduction of arsenate and of gamma-glutamyltranspeptidase in disposition of arsenite in rats. Toxicology 207(1): 91-104.
Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, and Smith-Spencer W. 2000. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7): 2705-38.
De Lafontaine Y, Gagne F, Blaise C, Costan G, Gagnon P, and Chan HM. 2000. Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St Lawrence River (Canada). Aqua Toxicol 50: 51-71.
Deb SC and Sandra SC. 1997. Bioaccumulation of metals in fishes: an in vivo experimental study of a sewage fed ecosystem. Environmentalist 17: 27-32.
Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderon-Aranda ES, Manno M, and Albores A. 2001. Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177(2): 132-48.
Eaton DL, Stacey NH, Wong KL, and Klaassen CD. 1980. Dose-response effects of various metal ions on rat liver, metallothionein, glutathione, heme oxygenase and cytochrome P-450. Toxicol Appl Pharmacol 55: 393-402.
Fauconneau B, Petegnief V, Sanfeliu C, Piriou A, and Planas AM. 2002. Induction of heat shock proteins (HSPs) by sodium arsenite in cultured astrocytes and reduction of hydrogen peroxide-induced cell death. J Meurochem 83: 1338-48.
Finkelman RB. 1999. Trace elements in coal: environmental and health significance. Biol Trace Elem Res 67: 197-204.
Foulkes EC. 1993. Metallothionein and glutathione as determinants of cellular retention and extrusion of cadmium and mercury. Life Sci 52: 1617-20.
Freedman JH, Ciriolo MR, and Peisach J. 1989. The role of glutathione in copper metabolism and toxicity. J Biol Chem 264: 5598-605.
Fu J, Mai B, Sheng G, Zhang G, Wang X, Peng P, Xiao X, Ran R, Cheng F, Peng X, Wang Z, and Tang UW. 2003. Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere 52(9): 1411-22.
Gurr JR, Liu F, Lynn S, and Jan KY. 1998. Calcium-dependent nitric oxide production is involved in arsenite-induced micronuclei. Mutat Res 416: 137-48.
Hakkila K, Maksimow M, Karp M, and Virta M. 2002. Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301: 235-42.
Hansen LH and Sorensen SJ. 2000. Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol Lett 193: 123-7.
Hassanein HM, Banhawy MA, Soliman FM, Abdel-Rehim SA, Muller WE, and Schroder HC. 1999. Induction of hsp70 by the herbicide oxyfluorfen (Goal) in the Egyptian Nile fish, Oreochromis niloticus. Arch Environ Contam Toxicol 37(1): 78-84.
Hollis L, Hogstrand C, and Wood CM. 2001. Tissue-specific cadmium accumulation, metallothionein induction, and tissue zinc and copper levels during chronic sublethal cadmium exposure in juvenile rainbow trout. Arch Environ Contam Toxicol 41: 468-74.
Huang C, Li J, Ding M, Wang L, Shi X, Castranova V, Vallyathan V, Ju G, and Costa M. 2001. Arsenic-induced NFkB transactivation through Erks- and JNKs-dependent pathways in mouse epidermal JB6 cells. Mol Cell Biochem 222: 29-34.
Inouye S, Gomada M, Sangodkar UM, Nakazawa A, and Nakazawa T. 1990. Upstream regulatory sequence for transcriptional activator XylR in the first operon of xylene metabolism on the TOL plasmid. J Mol Bio 216(2): 251-60.
International Agency for Research on Cancer. 1987. Monographs on the evaluation of carcinogenic risks to humans. Overall evaluations of carcinogenicity: an updating of IARC monographs. IARC Scientific Publications 1-42 (Suppl 7): 100-6.
International Agency for Research on Cancer. 1999. Monographs on the evaluation of carcinogenic risks to humans. Re-Evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. IARC Scientific Publications 71: 829-64.
Kang YJ, Clapper JA, and Enger MD. 1989. Enhanced cadmium cytotoxicity in A549 cells with reduced glutathione levels is due to neither enhanced cadmium accumulation nor reduced metallothionein synthesis. Cell Biol Toxicol 5: 249-60.
Kang YJ and Enger MD. 1987. Effect of cellular glutathione depletion on cadmium-induced cytotoxicity in human lung carcinoma cells. Cell Biol Toxicol 3: 347-60.
Kiang JG and Tsokos GC. 1998. Heat shock protein 70 kD: Molecular Biology, Biochemistry, and Physiology. Pharmacol Ther 80: 183-201.
Kim MN, Park HH, Lim WK, and Shin HJ. 2005. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J Microbiol Methods 60: 235-45.
Kitchin KT. 2001. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172(3): 249-61.
Kito H, Tazawa T, Ose Y, Sato T, and Ishikawa T. 1982b. Protection by metallothionein against cadmium toxicity. Comp Biochem Physiol 73C: 135-9.
Kobatake E, Niimi T, Haruyama T, Ikariyama Y, and Aizawa M. 1995. Biosensing of benzene derivatives in the environment by luminescent Escherichia coli. Biosensors and Bioelectronics 10: 601-5.
Kohler S, Belkin S, and Schmid RD. 2000. Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366: 769-79.
Kuroshima. 1995. Hepatic metallothionein and glutathione levels in red sea bream. Comp Biochem Physiol C 110: 95-100.
Lansdown ABG. 1995. Physiological and toxicological changes in the skin resulting from the action and interaction of metal ions. Crit Rev Toxicol 25: 397-462.
Lerman SA, Clarkson TW, and Gerson RJ. 1983. Arsenic uptake and metabolism by liver cells is dependent on arsenic oxidation state. Chem biol Interact 45: 401-6.
Liao VHC and Yu CW. 2005. Caenorhabditis elegans gcs-1 confers resistance to arsenic-induced oxidative stress. Biometals 18(5): 519-28.
Liu J, Kadiiska MB, Liu Y, Lu T, Qu W, and Waalkes MP. 2001. Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci 61(2): 314-20.
Lynn S, Gurr JR, Lai HT, and Jan KY. 2000. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86: 514-19.
Maitani T, Saito N, Abe M, Uchiyama S, and Saito Y. 1987. Chemical form-dependent induction of hepatic zinc-thionein by arsenic administration and effect of co-administered selenium in mice. Toxicol Lett 39(1): 63-70.
Marques S, Gallegos MT, Manzanera M, Holtel A, Timmis KN, and Ramos JL. 1998. Activation and repression of transcription at the double tandem diver gent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. J Bacteriol 180: 2889-94.
Marques S, Manzanera M, Gonzalez-Perez MM, Ruiz R, and Ramos JL. 1999a. Biodegradation, plasmid-encoded catabolic pathways, host factors and cell metabolism. Environ Microbiol 1: 103-4.
Marques S, Manzanera M, Gonzalez-Perez MM, Gallegos MT, and Ramos JL. 1999b. The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with sigma 32 or sigma 38 depending on the growth phase. Mol Microbiol 31: 1105-13.
Mayer FL, Versteeg DJ, and McKee MJ Jr. 1992. Physiological and nonspecific biomarkers. In: Huggett, R.J., Kimerle, R.A., Mehrle, P.M. Jr, Bergman, H.L. (Eds.), Biomarkers: Biochemical, Physiological, and Histological Markers of Anthropogenic Stress. Lewis, Chelsea, MI, 5-85.
McCarthy JF and Shugart L (editors). 1990. Biomarkers of Environmental Contamination. Lewis Publishers, Boca Raton, Florida.
Michiels C, Raes M, Toussaint O, and Remacle J. 1994. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical Biol Med 17: 235-48.
Miller WG, Leveau JHJ, and Lindow SE. 2000. Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant-Microbe Interact 13: 1243-50.
Molina A, Carpeaux R, Martial JA, and Muller M. 2002. A transformed fish cell line expression a green fluorescent protein-luciferase fusion gene responding to cellular stress. Toxicol in vitro 16: 201-7.
Moore MN, Depledge MH, Readman JW, and Leonard DRP. 2004. An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res 247-68.
National Research Council. 1999. Arsenic in drinking water. National Academy Press, Washington, DC.
Ochi T, Otsuka F, Takahashi K, and Ohsawa M. 1988. Glutathione and metallothioneins as cellular defense against cadmium toxicity in cultured Chinese hamster cells. Chem Biol Interact 65: 1-14.
Paitan Y, Biran I, Shechter N, Biran D, Rishpon J, and Ron EZ. 2004. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal Biochem 335: 175-83.
Pancrazio JJ, Whelan JP, Borkholder DA, MA W, and Stenger DA. 1999. Development and application of cell-based biosensors. Ann Biomed Eng 27(6): 697-711.
Perez-Martin J and de Lorenzo V. 1995. The sigma 54-dependent promoter Ps of the TOL plasmid of Pseudomonas putida requires HU for transcriptional activation in vivo by XylR. J Bacteriol 177: 3758-63.
Phoenix P, Keane A, Patel A, Bergeron H, Ghoshal S, and Lau PCK. 2003. Characterization of a new solvent-responsive gene locus in Pseudomonas putita F1 and its functionalization as a versatile biosensor. Environ Microbiol 5(12): 1309-27.
Price EE, Stauffer Jr., and Swift MC. 1985. Effect of temperature on growth of juvenile Oreochromis mossambicus and Sarotherodon melanotheron. Environ Biol Fishes 13: 149-52.
Ritossa F. 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18: 571-3.
Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, and Segura A. 2001. Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 4: 166-71.
Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, and Kado CI. 1987. Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169(11): 5101-12.
Roy S, Lindström-Sepp P, and Hänninen O. 1996. Integrative approach to aquatic environment biomonitoring. In: Richardson, M. (Ed.), Environmental Xenobiotics. Taylor and Francis, London, 123-42.
Ruiz R, Aranda-Olmedo MI, Dominguez-Cuevas P, Ramos-Gonzalez MI, and Marques S. 2004. Transcriptional Regulation of the Toluene Catabolic Pathways. New York: Kluwer Academic/Plenum Publishers.
Russell J, Ness J, Chopra M, McMurray J, and Smith WE. 1994. The assessment of the HO. Scavenging action of therapeutic agents. J Pharmacol Biomed Anal 12: 863-6.
Sagi E, Hever N, Rosen R, Bartolome AJ, Premkumar JR, Ulber R, Lev O, Scheper T, and Belkin S. 2003. Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens Actuator B-Chem 90: 2-8.
Schlenk D, Wolford L, Chelius M, Steevens J, and Chan KM. 1997. Effect of arsenite, arsenate, and the herbicide monosodium methyl arsonate (MSMA) on hepatic metallothionein expression and lipid peroxidation in Channel catfish. Comp Biochem Physiol 118C(2): 177-83.
Segner H and Braunbeck T. 1998. Cellular response profile to chemical stress. In: Schüürmann G, Markert B (Eds.), Ecotoxicology vol. Part 3, Ch. 17, John Wiley & Sons, Inc. and Spektrum Akadem. Verlag. 521-69.
Sharp CW and Rosenberg NL. 1997. Inhalants. In: Lowinson JH, Ruiz P, Millman RB, Langrod JG, eds. Substance abuse. A comprehensive textbook. Baltimore: Williams and Wilkins. 246-64.
Singhal RK, Anderson ME, and Meister A. 1987. Glutathione, a first line of defense against cadmium toxicity. FASEB J 1(3): 220-3.
Stadtman TC. 1996. Selenocysteine. Annu Rev Biochem 65: 83-100.
Stegeman JJ, Brouwer M, and Di Giulio RT. 1992. Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: Huggett, R.J., Kimerle, R.A., Mehrle, P.M., Bergman, H.L. (Eds.), Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. A special publication of SETAC. Lewis Publishers, Chelsea, MI, 235-35.
Stiner L and Halverson LJ. 2002. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68(4): 1962-71.
Styblo M, Delnomdedieu M, and Thomas DJ. 1996. Mono- and di- methylation of arsenic in rat liver cytosol in vitro. Chem Biol Interact 99: 147-64.
Suhendrayatna, Ohki A, Nakajima T, and Maeda S. 2001. Metabolism and organ distribution of arsenic in the freshwater Tilapia mossambica. Appl Organometal Chem 15: 566-71.
Tauriainen S, Karp M, Chang W, and Virta M. 1997. Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63: 4456-61.
Tomás MJ and Wysocki R. 2001. Mechanisms involved in metalloid transport and tolerance acquisition. Curr Genet 40: 2-12.
Tsou TC, Yeh SC, Tsai FY, and Chang LW. 2004. The protective role of intracellular GSH status in the arsenite-induced vascular endothelial dysfunction. Chem Res Toxicol 17(2): 208-17.
Vahter M and Concha G. 2001. Role of metabolism in arsenic toxicity. Pharmacol Toxicol 89: 1-5.
Van der Oost R, Goksoyr A, Celander M, Heida H, and Vermeulen NPE. 1996. Biomonitoring of aquatic pollution with feral eel (Anguilla anguilla): II. Biomarkers: pollution-induced biochemical responses. Aquat Toxicol 36: 189-222.
Velazquez F, Parro V, and de Lorenzo V. 2005. Inferring the genetic network of m-xylene metabolism through expression profiling of the xyl genes of Psudomonas putita mt-2. Mol Microbiol 57(6): 1557-69.
Vijayan MM, Morgan JD, Sakamoto T, Grau EG, and Iwama GK. 1996. Food deprivation affects seawater acclimation in tilapia: hormonal and metabolic changes. J Exp Biol 199: 2467-75.
Yamanaka K, Hasegawa A, Sawamura R, and Okada S. 1991. Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenic, in mice. Toxicol Appl Pharmacol 108: 205-13.
Yamanaka K, Hayashi M, Tachikawa M, Kato K, Hasegawa A, Oku N, and Okada S. 1997. Metabolic methylation is a possible genotoxicity enhancing process of inorganic arsenic. Mutat Res 394: 95-101.
Yamanaka K, Mizol M, Kato K, Hasegawa A, Nakano M, and Okada S. 2001. Oral administration of dimethylarsinic acid, a main metabolite of inorganic arsenic, in mice promotes skin tumorigenesis initiated by dimethylbenz(a)anthracene with or without ultraviolet B as a promoter. Biol Pharm Bull 24: 510-4.
Wang TS, Kuo CF, Jan KY, and Huang H. 1996. Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169: 256-68.
Wijeweera JB, Gandolfi AJ, Parrish A, and Lantz RC. 2001. Sodium arsenite enhances AP-1 and NF-kappa B DNA binding and induces stress protein expression in precision-cut rat lung slices. Toxicol Sci 61(2): 283-94.
Willardson BM, Wilkins JF, Rand TA, Schupp JM, Hill KK, Keim P, and Jackson PJ. 1998. Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64(3): 1006-12.
Williams PA and Murray K. 1974. Metabolism of benzoate and the methylbenzoates by Psudomonas putita (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120: 416-23.
Wong CK, Yeung HY, Cheung RY, Yung KK, and Wong MH. 2000. Ecotoxicological assessment of persistent organic and heavy metal contamination in Hong Kong coastal sediment. Arch Environ Contam Toxicol 38(4): 486-93.
Zhang C and Bennett GN. 2005. Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67(5): 600-18.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23857-
dc.description.abstractThe environmental pollution threatens human health as well as wildlife in the past decades. As a result, it is necessary to develop sensitive, effective, and inexpensive methods which can efficiently monitor and determine the presence and amount of hazards in the environment. In this study, we report two biologically analytical methods to detect and measure the environmental pollutants.
Firstly, we describe the construction and characterization of the fluorescent and the luminescent Escherichia coli whole-cell biosensors for the detection of bioavailable toluene and its related compounds. The biosensor strains Escherichia coli DH5α carrying pTOLGFP or pTOLLUX were developed based on the expression of reporter genes: gfp or luxCDABE under the control of the Pu promoter and xylR gene of Pseudomonas putita plasmid pWW0. To assess their applicability for analyzing environmentally relevant samples, the biosensor harboring pTOLLUX was field-tested on water and soil samples collected from toluene contaminated sites. Our results demonstrate that nonpathogenic bacterial biosensors developed in the present study is useful and applicable in determining the bioavailability of toluene and its related compounds with high sensitivity in environmental samples, and they suggest a potential for its inexpensive application in field-ready tests.
Secondly, alterations of glutathione levels as well as the mRNA levels of HSP70 in tilapia fish were investigated under arsenite exposure. Tilapia fish were exposed to waterborne arsenite (0, 1, 2, and 4 ppm, respectively) for 1 day and 3 day exposure duration. After the treatment, arsenite concentrations in gill, intestine, liver, and muscle were measured by means of inductively coupled plasma (ICP). Meanwhile, the GSH contents in fish tissues were measured and the mRNA expression of HSP70 was analyzed with semi-quantitative RT-PCR. Our results indicate that HSP70 mRNA expression and GSH levels exhibited a correlation with the arsenite exposure condition as well as the arsenic accumulation, indicating their usefulness as the biomarker of arsenite exposure in tilapia. Furthermore, the bioaccumulations of arsenic differentially distributed in various fish tissues assist in providing information of bioavailability.
We conclude that biological assays, such as bacterial biosensors and biomarker presented in this study, for detecting and determining the environmental contaminants can compensate the disadvantages of traditional analytical methods such as not capable to reflect the bioavailability and failing to show the effects of contaminants mixtures on organisms, and thus providing critical data that can be useful in risk assessment.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:11:47Z (GMT). No. of bitstreams: 1
ntu-95-R93622013-1.pdf: 2752575 bytes, checksum: 2bdac91f99b99a338dbff18612b5a196 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents致 謝 I
中文摘要 III
ABSTRACT V
TABLE OF CONTENTS VII
LIST OF TABLES IX
LIST OF FIGURES X
ABBREVIATIONS XI
CHAPTER 1 INTRODUCTION 1
Overview of environmental pollution 1
1.1 Bacterial biosensor of toluene and its related compounds 2
1.1.1 Toluene 2
1.1.2 Regulation of xyl operon 3
1.1.3 Bacterial biosensor 6
1.2 Biomarker of arsenic exposure 9
1.2.1 Arsenic 9
1.2.2 Biomarker 11
1.2.3 Tilapia 12
1.2.4 HSP70 12
1.2.5 Glutathione 13
1.3 Purposes of study 15
1.3.1 Bacterial biosensor of toluene and its related compounds 15
1.3.2 Biomarker of arsenite exposure 16
CHAPTER 2 MATERIALS AND METHODS 17
Chemicals 17
2.1 Bacterial biosensor of toluene 17
2.1.1 Construction of biosensor plasmids 17
2.1.2 Bacteria Cultivation and induction experiments 19
2.1.3 Measurements of GFP fluorescence and luminescence in culture 21
2.1.4 Microscopic detection of fluorescent biosensor 22
2.1.5 Selectivity studies of biosensors 22
2.1.6 Kinetic analysis of GFP fluorescence and luminescence induced by toluene 23
2.1.7 Testing of contaminated soil and water samples with bacteria biosensors 23
2.1.8 Data analysis 24
2.2 Biomarker of arsenic exposure 24
2.2.1 Test organisms 24
2.2.2 Treatment of fish 25
2.2.3 Isolation of total RNA from fish 25
2.2.4 Reverse transcription and polymerase chain reaction (RT-PCR) 26
2.2.5 Chemical analysis of arsenic 28
2.2.6 Intracellular GSH measurement 28
CHAPTER 3 RESULTS 30
3.1 Bacterial biosensor of toluene and its related compounds 30
3.1.1 Construction of the bacterial biosensors 30
3.1.2 Selectivity analysis of biosensor to toluene-related compounds 30
3.1.3 Time-dependent induction of biosensor with effector 33
3.1.4 Dose-dependent induction of biosensor with effector 35
3.1.5 Testing of contaminated water and soil with the biosensor 37
3.2 Biomarker of arsenic exposure 41
3.2.1 Arsenic accumulation in tilapia 41
3.2.2 HSP70 as biomarker of arsenic exposure 41
3.3.3 GSH as biomarker of arsenic exposure 43
CHAPTER 4 DISCUSSION 50
4.1 Bacterial biosensor of toluene and its related compounds 50
4.1.1 Development of bacterial biosensors of toluene 50
4.1.2 Characterization of bacterial biosensors of toluene 50
4.1.3 Comparison of the bacterial biosensor assay with the traditional analysis method 52
4.1.4 Comparison of reporter protein in biosensor 54
4.1.5 Field testing of environmental samples using a biosensor approach 56
4.2 Biomarker of arsenic exposure 57
4.2.1 Arsenic accumulation in tilapia 57
4.2.2 HSP70 mRNA expression as biomarker of arsenic exposure 58
4.2.3 GSH as biomarker of arsenic exposure 59
CHAPTER 5 CONCLUSION 61
5.1 Bacterial biosensor for toluene and its related compounds 61
5.2 Biomarker of the arsenic exposure 61
REFERENCE 62
APPENDIX 73
dc.language.isoen
dc.title利用生物方法檢測環境中的污染物zh_TW
dc.titleBiological assays for the detection and measurement of environmental pollutantsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈偉強,李心予
dc.subject.keyword細菌生物偵測器,甲苯,生物獲取率,砷,生物指標,zh_TW
dc.subject.keywordBacterial biosensors,Toluene,Bioavailability,Arsenic,Biomarker,en
dc.relation.page73
dc.rights.note未授權
dc.date.accepted2006-07-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved