Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王汎熒(Fun-In Wang)
dc.contributor.authorShu-Chia Huen
dc.contributor.author胡書佳zh_TW
dc.date.accessioned2021-06-08T05:10:30Z-
dc.date.copyright2011-07-25
dc.date.issued2011
dc.date.submitted2011-07-12
dc.identifier.citationAnonymous 2008. Manual of diagnostic tests and vaccines for terrestrial animals In Teschovirus encephalomyelitis (previously enterovirus encephalomyelitis or Teschen/Talfan disease) (World Organisation for Animal Health ).
Borg, I., Rohde, G., Loseke, S., Bittscheidt, J., Schultze-Werninghaus, G., Stephan, V., Bufe, A., 2003, Evaluation of a quantitative real-time PCR for the detection of respiratory syncytial virus in pulmonary diseases. Eur Respir J 21, 944-951.
Buitrago, D., Cano-Gomez, C., Aguero, M., Fernandez-Pacheco, P., Gomez-Tejedor, C., Jimenez-Clavero, M.A., 2010, A survey of porcine picornaviruses and adenoviruses in fecal samples in Spain. J Vet Diag Invest 22, 763-766.
Bustin, S., 2000, Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25, 169-193.
Bustin, S., Mueller, R., 2005, Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci 109, 365-379.
Chittick, W.A., Stensland, W.R., Prickett, J.R., Strait, E.L., Harmon, K., Yoon, K.J., Wang, C., Zimmerman, J.J., 2011, Comparison of RNA extraction and real-time reverse transcription polymerase chain reaction methods for the detection of Porcine reproductive and respiratory syndrome virus in porcine oral fluid specimens. J Vet Diag Invest 23, 248-253.
Chiu, K.C., 2010, Detection of porcine teschovirus from culled postweaner pigs. Master degree thesis. National Taiwan University, Taipei.
Das, A., Spackman, E., Pantin-Jackwood, M.J., Suarez, D.L., 2009, Removal of real-time reverse transcription polymerase chain reaction (RT-PCR) inhibitors associated with cloacal swab samples and tissues for improved diagnosis of avian influenza virus by RT-PCR. J Vet Diag Invest 21, 771-778.
Dheda, K., Huggett, J., Bustin, S., Johnson, M., Rook, G., Zumla, A., 2004, Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 112-119.
Dorak, M.T., 2006, In: Real-time PCR Taylor & Francis, Abingdon, England.
Fenner, F.J., Gibbs, E.P.J., Murphy, F.A., Rott, R., Utuddert, M.J., White, D.O., 1993, Porcine enteroviruses, In: Veterinary virology 2nd. Academic Press, San Diego, pp. 416-419.
Fronhoffs, S., Totzke, G., Stier, S., Wernert, N., Rothe, M., Bruning, T., Koch, B., Sachinidis, A., Vetter, H., Ko, Y., 2002, A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Mol Cell Probes 16, 99-110.
Horstmann, D.M., Wydra, J., Kluge, B., 1952, Experiments with Teschen disease (virus encephalomyelitis of swine). J Immunol 69, 379-394.
Huang, T.S., Wang, C., Deng, M.C., Jeng, J.J., Lee, S.H., Pan, C.S., Lee, M.C., Jong, M.H., 2009, The results of virus isolation in swine tissue samples submitted by LDCC and tested by viral isolation and PCR and/or RT-PCR in 2008. In Exp Rep AHRI (Animal Health Research Institute) 44, 35-46.
Jimenez-Clavero, M.A., Fernandez, C., Ortiz, J.A., Pro, J., Carbonell, G., Tarazona, J.V., Roblas, N., Ley, V., 2003, Teschoviruses as indicators of porcine fecal contamination of surface water. Appl Environ Microbiol 69, 6311-6315.
Kaku, Y., Murakami, Y., Sarai, A., Wang, Y., Ohashi, S., Sakamoto, K., 2007, Antigenic properties of porcine teschovirus 1 (PTV-1) Talfan strain and molecular strategy for serotyping of PTVs. Arch Virol 152, 929-940.
Kaku, Y., Sarai, A., Murakami, Y., 2001, Genetic reclassification of porcine enteroviruses. J Gen Virol 82, 417-424.
Knowles, N.J., 1988, The association of group III porcine enteroviruses with epithelial tissue. Vet Rec 122, 441-442.
Knowles, N.J., 2006, Porcine enteric picornaviruses, In: Diseases of swine 9th. Blackwell, Iowa, pp. 337-343.
Koestner, A., Kasza, L., Kindig, O., 1966, Electron microscopy of tissue cultures infected with porcine polioencephalomyelitis virus. Am J Pathol 48, 129-147.
Krumbholz, A., Wurm, R., Scheck, O., Birch-Hirschfeld, E., Egerer, R., Henke, A., Wutzler, P., Zell, R., 2003, Detection of porcine teschoviruses and enteroviruses by LightCycler real-time PCR. J Virol Methods 113, 51-63.
Kubista, M., Andrade, J., Bengtsson, M., Forootan, A., Jonak, J., Lind, K., Sindelka, R., Sjoback, R., Sjogreen, B., Strombom, L., 2006, The real-time polymerase chain reaction. Mol Asp Med 27, 95-125.
La Rosa, G., Muscillo, M., Di Grazia, A., Fontana, S., Iaconelli, M., Tollis, M., 2006, Validation of rt-PCR assays for molecular characterization of porcine teschoviruses and enteroviruses. J Vet Med B Infect Dis Vet Public Health 53, 257-265.
Lin, Y.C., 2009, Detection of porcine teschovirus in tissues of experimentally infected pigs. Master degree thesis. National Taiwan University, Taipei.
Lin, Y.L., 2011, The distribution and genotyping of porcine teschovirus in Taiwan. 5th Asian Pig Veterinary Society Congress.
Liu, S., Zhao, Y., Hu, Q., Lv, C., Zhang, C., Zhao, R., Hu, F., Lin, W., Cui, S., 2010, A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus; classical swine fever virus; and porcine reproductive and respiratory syndrome virus in clinical specimens. J Virol Methods 172, 88-92.
Mackay, I.M., 2007, In: Real-time PCR in microbiology : from diagnosis to characterization. Caister Academic, Norfolk, U.K.
Mahy, B.W.J., Van Regenmortel, M.H.V., 2008, Picornaviruses: Molecular Biology, In: Encyclopedia of virology. Academic Press, Boston, pp. 129-140.
Manuelidis, E.E., Sprinz, H., Horstmann, D.M., 1954, Pathology of Teschen disease (virus encephalomyelitis of swine). Am J Pathol 30, 567-597.
Martin, C.M., Sheils, O., O'Leary, J., 2005, Real-Time PCR gene analysis, In: The science of laboratory diagnosis. John Wiley & Sons, Hoboken, NJ, pp. 495-504.
Oberste, M., Maher, K., Kilpatrick, D., Flemister, M., Brown, B., Pallansch, M., 1999a, Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37, 1288-1293.
Oberste, M., Maher, K., Kilpatrick, D., Pallansch, M., 1999b, Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73, 1941-1948.
Palacios, G., Casas, I., Tenorio, A., Freire, C., 2002, Molecular identification of enterovirus by analyzing a partial VP1 genomic region with different methods. J Clin Microbiol 40, 182-192.
Palmquist, J.M., Munir, S., Taku, A., Kapur, V., Goyal, S.M., 2002, Detection of porcine teschovirus and enterovirus type II by reverse transcription-polymerase chain reaction. J Vet Diagn Invest 14, 476-480.
Pogranichniy, R.M., Janke, B.H., Gillespie, T.G., Yoon, K.J., 2003, A prolonged outbreak of polioencephalomyelitis due to infection with a group I porcine enterovirus. J Vet Diagn Invest 15, 191-194.
Racaniello, V.R., 2006, One hundred years of poliovirus pathogenesis. Virology 344, 9-16.
Radoni, A., Thulke, S., Mackay, I., Landt, O., Siegert, W., Nitsche, A., 2004, Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophy Res Comm 313, 856-862.
Salles, M.W.S., Scholes, S.F.E., Dauber, M., Strebelow, G., Wojnarowicz, C., Hassard, L., Acton, A.C., Bollinger, T.K., 2011, Porcine teschovirus polioencephalomyelitis in western Canada. J Vet Diag Invest 23, 367-373.
Sellars, M., Vuocolo, T., Leeton, L., Coman, G., Degnan, B., Preston, N., 2007, Real-time RT-PCR quantification of Kuruma shrimp transcripts: a comparison of relative and absolute quantification procedures. J Biotechnol 129, 391-399.
Skovgaard, K., Mortensen, S., Poulsen, K., Angen, Heegaard, P., 2007, Validation of putative reference genes for qRT-PCR normalization in tissues and blood from pigs infected with Actinobacillus pleuropneumoniae. Vet Immunol Immunopathol 118, 140-146.
Smith, T.J., Baker, T., 1999, Picornaviruses: epitopes, canyons, and pockets. Adv Virus Res 52, 1-23.
Sozzi, E., Barbieri, I., Lavazza, A., Lelli, D., Moreno, A., Canelli, E., Bugnetti, M., Cordioli, P., 2010, Molecular characterization and phylogenetic analysis of VP1 of porcine enteric picornaviruses isolates in Italy. Transbound Emerg Dis 57, 434-442.
Takahashi, M., Seimiya, Y.M., Seki, Y., Yamada, M., 2008, A piglet with concurrent polioencephalomyelitis due to porcine teschovirus and postweaning multisystemic wasting syndrome. J Vet Med Sci 70, 497-500.
Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007, MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-1599.
Thoelen, I., Moes, E., Lemey, P., Mostmans, S., Wollants, E., Lindberg, A., Vandamme, A., Van Ranst, M., 2004, Analysis of the serotype and genotype correlation of VP1 and the 5'noncoding region in an epidemiological survey of the human enterovirus B species. J Clin Microbiol 42, 963-971.
Tichopad, A., Didier, A., Pfaffl, M.W., 2004, Inhibition of real-time RT-PCR quantification due to tissue-specific contaminants. Mol Cell Probes 18, 45-50.
Totzke, G., Sachinidis, A., Vetter, H., Ko, Y., 1996, Competitive reverse transcription/polymerase chain reaction for the quantification of p53 and mdm2 mRNA expression. Mol Cell Probes 10, 427-433.
Van Pelt-Verkuil, E., 2008, Important considerations for typical, quantitative and real-time PCR protocols, In: Principles and technical aspects of PCR amplification. Springer Verlag, pp. 119-139.
Wegener, G., Kamp, G., Feiden, S., Wolfrum, U., 2008, Expression and compartmentalisation of the glycolytic enzymes GAPDH and pyruvate kinase in boar spermatogenesis. Reprod Fert Develop 20, 713-723.
Wilson, I.G., 1997, Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63, 3741-3751.
Wong, M., Medrano, J., 2005, Real-time PCR for mRNA quantitation. Biotechniques 39, 75-85.
Yamada, M., Kaku, Y., Nakamura, K., Yoshii, M., Yamamoto, Y., Miyazaki, A., Tsunemitsu, H., Narita, M., 2007, Immunohistochemical detection of porcine teschovirus antigen in the formalin-fixed paraffin-embedded specimens from pigs experimentally infected with porcine teschovirus. J Vet Med A Physiol Pathol Clin Med 54, 571-574.
Yamada, M., Kozakura, R., Ikegami, R., Nakamura, K., Kaku, Y., Yoshii, M., Haritani, M., 2004, Enterovirus encephalomyelitis in pigs in Japan caused by porcine teschovirus. Vet Rec 155, 304-306.
Zell, R., Dauber, M., Krumbholz, A., Henke, A., Birch-Hirschfeld, E., Stelzner, A., Prager, D., Wurm, R., 2001, Porcine teschoviruses comprise at least eleven distinct serotypes: molecular and evolutionary aspects. J Virol 75, 1620-1631.
Zell, R., Krumbholz, A., Henke, A., Birch-Hirschfeld, E., Stelzner, A., Doherty, M., Hoey, E., Dauber, M., Prager, D., Wurm, R., 2000, Detection of porcine enteroviruses by nRT-PCR: differentiation of CPE groups I-III with specific primer sets. J Virol Methods 88, 205-218.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23815-
dc.description.abstract豬鐵士古病毒(Porcine teschovirus, PTV)為Picornaviridae科Teschovirus屬,為一直徑約25~30 nm球形、無封套、正向單股的RNA病毒。PTV迄今共有11種血清型,並和許多疾病相關。於1930 至1950年代,由強毒力的PTV-1感染導致豬隻的高死亡率、非化膿性的腦脊髓炎(鐵線病,Teschen disease)造成嚴重的經濟損失。如今,高毒力的鐵線病已逐漸被低毒力的鐵芬病(Talfan disease)所取代。而台灣自2000年首次於田間豬隻中分離出PTV-1(首次疫情報告),此後PTV分離率便逐年逐漸增加,顯示出PTV於台灣田間普遍汙染的情形。本實驗的目的為藉由反轉錄-聚合酶鏈鎖反應(RT-PCR)及巢式聚合酶鏈鎖反應(nested PCR)檢測淘汰豬隻體內15種不同臟器(腦的前、中、後區域、第一頸椎C1、肺、肝、腎、脾、扁桃腺、鼠蹊淋巴結、空腸及迴腸的腸系膜淋巴結、空腸、迴腸、及結腸)的病毒分布,並篩選一組臟器以利實驗室診斷。另一目的則是探討各臟器病變與PTV呈現的相關性。第三目的為觀察PTV血清型的分布。第四目的是藉由即時聚合酶鏈鎖反應(qRT-PCR)定量病毒於不同組織之間的分布。在30頭淘汰離乳豬隻當中有96.7% (29/30)呈現PTV陽性,臟器中PTV偵測最高的為腸道(結腸: 65.5%、空腸: 62.1%、迴腸: 55.2%)、其次為淋巴器官(迴腸淋巴結: 79.3%、鼠蹊淋巴結: 58.6%)、腦及內臟的偵測率則相似。統計顯示,在腦的後段(含部份大腦、小腦及腦幹)非化膿性腦炎的出現與PTV的出現有明顯的相關性 (P = 0.054);空腸的絨毛萎縮與淋巴球浸潤與PTV的出現也有相關性 (P = 0.139)。較適合用於偵測的器官為腦的前、中區域、腎、脾、扁桃腺、迴腸淋巴結、迴腸。由30頭淘汰離乳豬隻當中的20頭共檢出5種PTV血清型,分別為PTV-1、-4、-6、-7、-11,其中4頭有兩種血清型同時存在於不同臟器。最常見的血清型為PTV-7 (≒ 60%) 及 PTV-6 (≒ 30%)。qRT-PCR具有比nested PCR高的敏感性,在各臟器當中以迴腸的病毒量顯著最高 (P = 0.005~0.045),其含量約104.5±1.52 copy/μg RNA。zh_TW
dc.description.abstractPorcine teschoviruses (PTVs) belong to genus Teschovirus within the family Picornaviridae. The virions are spherical, 25 to 30 nm in diameter, nonenveloped with a linear plus sense ssRNA genome. Hitherto, PTVs have 11 serotypes and are associated with a variety of clinical diseases. The virulent PTV-1 strains were associated with highly fatal, nonsuppurative encephalomyelitis of pigs (Teschen disease) causing considerable economic loss during 1930-1950s. Nowaday, the highly virulent Teschen strains have been replaced by less virulent Talfan strain and spread worldwide. In Taiwan, PTV-1 was first isolated from pigs in year 2000 (virgin epidemic), and the isolation rates of PTVs from porcine herds had increased yearly. One aim of this study was to investigate in the detail the PTV distribution in a set of 15 different organs by RT-PCR/nested PCR in culled postweanling pigs, and to select a set of representative organs for diagnostic purpose. Another aim was to correlate the histopathological changes with the detection of PTV. The third aim was to investigate the variety of serotypes of PTV present in Taiwan. The fourth aim was to quantitate the virus load (RNA copy number per μg RNA) in tissues by qRT-PCR. A set of 15 organs, including cranial, medial, caudal portion of brain, C1, lung, liver, kidney, spleen, tonsil, inguinal LN, mesentery LN near jejunum and ileum, jejunum, ileum, and colon in 30 culled postweanling pigs were collected. The positive rate of PTVs detection was 96.7% (by heads), and most commonly detected in intestine (colon: 65.5%, jejunum: 62.1%, and ileum 55.2%), followed by lymphoid organs (ileac LN: 79.3%, inguinal LN: 58.6%), and similar rates in brain and visceral organs. Based on the above results, a set of organs including cranial and medial portion of cerebrum, kidney, spleen, tonsil, ileac LN, ileum, and inguinal LN was considered representative for diagnosis purpose. The presence of nonsuppurative encephalitis in the caudal brain (include part of cerebrum, cerebellum and brain stem) had prominent correlation with the simultaneous detection of PTV (P = 0.054). The villi atrophy and lymphoid infiltration in the jejunum also had a marginal correlaction with the detection of PTV (P = 0.139). A total of 5 serotype namely PTV-1, -4, -6, -7, -11 were identified from 20 animals which had finished genotyping, and 4/20 animals had two serotypes co-existed the same animal but in different organs. The most prevalent serotypes were PTV-7 (≒ 60%) and PTV-6 (≒ 30%). The qRT-PCR had higher sensitivity than nested PCR, and showed that ileum has the significantly highest viral load, equal to104.5±1.52 copy/μg RNA, of all organs (P = 0.005~0.045).en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:10:30Z (GMT). No. of bitstreams: 1
ntu-100-R98629015-1.pdf: 9705086 bytes, checksum: 0175d9bf05faab7534e2f71724c4835b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
中文摘要 I
Abstract II
Contents IV
List of Figures VIII
List of Tables IX
List of Appendix X
Chapter I Introduction 1
Chapter II Literature review 3
2.1 Porcine Teschovirus (PTV) 3
2.1.1 Taxonomy and Classification 3
2.1.2 Morphology, Genomic Organization, and Gene Expression 4
2.1.3 Capsid Proteins 5
2.2 Epidemiology 6
2.2.1 Epidemiology in Taiwan 6
2.3 Clinical Signs 7
2.3.1 Polioencephalomyelitis 8
2.3.2 Fertility disorders 9
2.3.3 Diarrhea 9
2.3.4 Pneumonia 9
2.3.5 Cutaneous lesions 9
2.4 Pathological changes 10
2.5 Pathogenesis 11
2.6 Reverse transcription polymerase chain reaction (RT-PCR) and Nested PCR 12
2.7 Serotyping and Molecular typing (Genotyping) of PTVs 12
2.7.1 Serotyping of PTVs 13
2.7.2 Molecular typing (Genotyping) of PTVs 13
2.7.3 Whole P1 region 14
2.7.4 VP1 region 14
2.7.5 VP2 region 15
2.8 Real-time reverse transcription polymerase chain reaction (qRT-PCR) 15
2.8.1 Relative quantification of RNA 15
2.8.2 Absolute quantification 16
2.8.3 Fluorescent chemistries 17
Chapter III Materials and methods 18
3.1 Sample preparations 18
3.1.1 Sample preparation for RT-PCR 18
3.1.2 Sample preparation for qRT-PCR 18
3.2 Histopathological Examination 19
3.3 RNA preparations 19
3.3.1 RNA preparation for RT-PCR 19
3.3.2 RNA preparation for qRT-PCR 20
3.4 Primer selection 20
3.4.1 Housekeeping gene for internal control 20
3.4.2 Porcine teschoviruses 20
3.4.3 Porcine teschovirus serotype 1 21
3.4.4 Primers for PTVs molecular typing (VP1) 21
3.4.5 Primers for qRT-PCR 21
3.5 Reverse transcription polymerase chain reaction (RT-PCR) 22
3.5.1 RT-PCR for G3PDH, PTV, and TTD 22
3.5.2 RT-PCR for VP1 23
3.6 Nested polymerase chain reaction (Nested PCR) for PTV, TTD, and VP1 24
3.7 Gel electrophoresis 24
3.8 Gene sequencing and data analysis for VP1 25
3.9 Construction of cRNA standard curve for absolute quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) 25
3.9.1 Modified PTV primers for in vitro transcription 25
3.9.2 Synthesis of cDNA and PCR product 26
3.9.3 In vitro transcription 27
3.9.4 Quantification and dilution of cRNA standard 28
3.10 Real-time reverse transcription polymerase chain reaction (qRT-PCR) 28
3.10.1 Reverse transcription (RT) 28
3.10.2 Absolutely quantitative real-time PCR 28
3.10.3 Data analysis 29
Chapter IV Results 31
4.1 Sample collection 31
4.1.1 Gross Lesions 31
4.1.2 Histological Lesions 31
4.2 RT-PCR/ nested PCR for PTVs infection 32
4.2.1 G3PDH as internal control 32
4.2.2 PTVs detection by RT-PCR followed by nested PCR 33
4.2.3 Results of PTV-1 detection 34
4.3 Genotyping of PTVs 35
4.4 qRT-PCR results 35
Chapter V Discussion 39
Chapter VI References 46
List of Figures
Chapter II
Fig. 2. 1 Phylogenetic reconstruction by P1 capsid polypeptide of Picornaviridae 3
Fig. 2. 2 The structure of teschovirus virion and genome 5
Fig. 2. 3 Ganglionitits and non-suppurative ganglionitis are observed in the spinal
cord of experimental inoculated pigs 10
Fig. 2. 4 Antigen distribution in the inocubated pigs (n=3) and present virus
tropism to spincal cord (Lin, 2009) 12
Chapter IV
Fig. 4. 1 Gross lesions of the culled postweanling piglets 52
Fig. 4. 2 Histological lesions in respiratory system and lymphoid organs in culled
postweanling pigs 53
Fig. 4. 3 Histological lesions in the intestines of the culled postweanling pigs 54
Fig. 4. 4 Histological lesions in the brain of the culled postweanling pigs 55
Fig. 4. 5 Histological lesions in the visceral organs of the culled postweanling pigs 56
Fig. 4. 6 Amplification of G3PDH as internal control 57
Fig. 4. 7 Amplification of PTV specific products by RT-PCR and nested PCR 58
Fig. 4. 8 The PTV detection rates in 15 different organs by RT-PCR
and nested PCR 60
Fig. 4. 9 The PTV-1 specific amplification of the TTD F/R and TTD nF/nR primers 62
Fig. 4. 10 Amplification of VP1 region for genotyping 63
Fig. 4. 11 Phylogenetic analysis of partial VP1 nucleic acid sequence, constructed by
the neighbor-joining method 64
Fig. 4. 12 Amplification plot of 10-fold serial diluted cRNA standard and constructed
linear regression line 66
Fig. 4. 13 To correct the inter-assay variations standard curve of 29 cRNA standard dilution are used to construct as mean value standard curve 67
Fig. 4. 14 Amplification of 123 bp fragment of PTV detection in qRT-PCR 68
Fig. 4. 15 The viral load in different organs of the 29 heads 69
Fig. 4. 16 PTV-1 antigen presents in the approximately half of the cortical renal tubules,
mostly proximal convoluted tubules (Chiu, 2010) 72
List of Tables
Chapter II
Table 2. 1 Classification of porcine enteric picornavirus and the prototye virus
strain (Knowles, 2006) 4
Table 2. 2 The list of the clinical signs, ages, PTV and co-isolated pathogen in the
virgin epidemic episodes in Taiwan 7
Table 2. 3 Natural or experimental clinical signs associated with porcine teschovirus infection and porcine enterovirus 8
Chapter III
Table 3. 1 Primers used for RT-PCR, nested PCR and qRT-PCR 22
Table 4. 1 The PTV detection rates in 15 different organs by RT-PCR and
nested PCR. 60
Table 4. 2 The correlation between the histological lesions and nested PCR in
various organs was analyzed by chi-square test 61
Table 4. 3 Successful VP1amplification rates and the serotypes identification in different organs. 65
Table 4. 4 Intra-assay and inter-assay variability of the cRNA standard curve 67
Table 4. 5 The geometric mean of virus load (copy per μg RNA) in organs of each culled pigs. 70
Table 4. 6 The geometric mean of virus load (RNA copy numbers per μg RNA) in each organ of the 29 piglets as a group. 70
Table 4. 7 Viral load (RNA copy numbers per μg RNA) in ileum is significantly higher than other organs. 71
Table 4. 8 Comparison of the results of nested PCR and qRT-PCR 72
List of Appendix
Appendix 1: The results of PTVs detection in RT-PCR and nested PCR. 73
Appendix 2: The comparison of nested PCR results and histological lesions in
detected organs of the culled pigs. 75
Appendix 3: The viral load of samples quantitated by qRT-PCR. 77
Appendix 4: The difference of PTV RNA copy numbers per μg RNA of
different organs in paired T test. 80
dc.language.isoen
dc.title於淘汰豬隻中偵測豬鐵士古病毒並區分血清型
及建構qRT-PCR偵測組織內病毒絕對含量
zh_TW
dc.titleDetection of Porcine Teschovirus and Serotyping of the PTVs in Culled Post-weaned Pigs,
and Development of qRT-PCR to Quantitate PTVs Load in Tissues
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡信雄,許天來,黃金城,張志成
dc.subject.keyword豬鐵士古病毒,血清型,絕對定量,zh_TW
dc.subject.keywordporcine teschovirus,serotyping,absolute quantitate,en
dc.relation.page82
dc.rights.note未授權
dc.date.accepted2011-07-12
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
9.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved