請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23813完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文澧(Win-Li Lin) | |
| dc.contributor.author | Hsiao-Ching Tseng | en |
| dc.contributor.author | 曾曉菁 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:10:28Z | - |
| dc.date.copyright | 2011-07-25 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-13 | |
| dc.identifier.citation | [1] Alberto G., Dinah T., Lidia M., Moshe B., and Aviva T.H.,” Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (Doxil) in murine models,” J. Drug target 2002; 10(7):539-548.
[2] Allen T.M., Cullis P.R.,“ Drug delivery systems: entering the mainstream,” Science 2004; 303: 1818-1822. [3] Byrne J.D., Betancourt T., and Peppas B.L.,” Active targeting schemes for nanoparticle systems in cancer therapeutics,” Adv. Dru. Deli. Rev. 2008; 60:1615-1626. [4] C homas J.E., Dayton P., May D., and Ferrara K.W., “Threshold of fragmentation for ultrasonic contrast agents,” J .Biomed. Opt. 2001; 6:141-150. [5] 黃啟訓(2008)。聚焦式超音波配合超音波顯影劑應用於小鼠正常與腫瘤血管滲透性之探討。碩士論文,國立台灣大學工學院暨醫學院醫學工程學研究所。 [6] Duck F.A., Baker A.C., and Starritt H.C., Ultrasound in medicine, 1997.p.204. [7] Gao Z., Kennedy A.M., Christensen D.A., and Rapoport N.Y.,” Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy,” Ultrasonics 2008; 48(4): 260-270. [8] 李佳蓉(2011)。聚焦超音波結合微氣泡提升奈米抗癌藥物在小鼠腫瘤組織的累積量與療效之探討。碩士論文,國立台灣大學工學院暨醫學院醫學工程學研究所。 [9] Gregory J.R., and Theresa M.,” Multipleinjections of pegylated liposomal doxorubicin: pharmacokinetics and therapeutic activity,” J. Pharmacol. Exp. Ther. 2003; 306: 1058-1067. [10] Haley B. and Frenkel E.,” Nanoparticles for drug delivery in cancer treatment,” Urol. Onc. 2008; 26:57-64. [11] 許恆瑞(2010)。奈米抗癌藥物結合脈衝超音波及微氣泡與熱治療在小鼠耳朵腫瘤之研究。碩士論文,國立台灣大學工學院暨醫學院醫學工程學研究所。 [12] Heuser LS, Miller F.N.,” Differential macromolecular leakage from the vasculature of tumors,” Cancer 1986; 57:461-464. [13] Hynynen K., “Review of ultrasound therapy,” Ultrasonics symposium 1997; pp. 1305-1313. [14] Iwanaga K., Tominaga K., Yamamoto K., Habu M., Maeda H., Akifusa S., Tsujisawa T., Okinaga T., Fukuda J., and Nishihara T.,” Local delivery system of cytotoxic agents to tumors by focused sonoporation, ” Cancer Gene Ther. 2007; 14(4): 354-363. [15] Katsuyoshi H., Masamichi N., and Masayuki Y.,” Vital microscopic analysis of polymeric micelle extravasation from tumor vessels: macromolecular delivery according to tumor vascular growth stage,” J. Pharm. Sci. 2009; 99: 549-562. [16] Kerbel R.S., “Tumor angiogenesis: past, present and the near future,” Carcinogenesis 2000; 3:505-515. [17] Kong G., Braun R.D., Dewhirst M.W.,” Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size,” Cancer Res. 2000; 60(16): 4440-4445. [18] Lentacker I., and Geers B.,” Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved,” Mol. Ther. 2009; 18(1): 101-108. [19] Lucian L., Makoto S., Masao K.,” Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KB-R7785, in two tumor models,” Cancer Res. 1999; 59: 1252-1258. [20] Maeda H., Wu J., Sawa T., Matsumura Y., and Hori K.,” Tumor vascular permeability and EPR effect in macromolecular therapeutics: a review,” J. Control. Release 2000; 65:271-284. [21] Miller D.L., Quddus J.,” Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice,” Proc. Natl. Acad. Sci. USA 2000; 97:10179-10184. [22] Moses M.A., Brem H., Langer R.,” Advancing the field of drug delivery: taking aim at cancer,” Cancer Cell 2003; 4:337-341. [23] Postema M., van Wamel A., Lancee C.T., de Jong N.,” Ultrasound-induced encapsulated microbubble phenomena,” Ultrasound Med. Biol.2004; 30: 827-840. [24] Rapoport N., Gao Z., and Kennedy A.,“ Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy,” J. Natl. Cancer Inst. 2007; 99(14):1095-1106. [25] Richard M., Dorothy G., and Derek R.,” Magnetic resonance imaging of response to chemotherapy in orthotopic xenografts of human Bladder cancer,” Clin. Cancer Res. 1997; 3: 1635-1641. [26] Roel D., Claire R., and Chrit T.W.,” The role of ultrasound and magnetic resonance in local drug delivery,” J. Magn. Reson. Imaging 2008; 27: 400-409. [27] Sboros V.,” Response of contrast agents to ultrasound,” Adv. Dru. Deli. Rev. 2008; 60(10):1117-1136. [28] Skyba D.M., Price R.J., Linka A.Z., Skalak T.C., Kaul S.,” Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue,” Circulation 1998; 98:290-293. [29] 王慈吟(2006)。微氣泡輔助之穴蝕效應與超音波治療之應用。碩士論文,國立台灣大學電機工程學研究所。 [30] Ward M., Wu J.R., Chiu J.F.,” Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents,” J. Acoust. Soc. Am. 1999; 105:2951-2957. [31] Yamaura H., and Sato H.,” Quantitative studies on the developing vascular system of rat hepatoma,” J. Natl. Cancer Inst. 1974; 53: 1229-1240. [32] Yiyao L., Hirokazu M., Michihiro N.,” Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery,” J. Control. Release 2006; 114:89-99. [33] 李咏馨(2009)。非侵入式聚焦超音波結合超音波顯影劑應用於中樞神經系統藥物傳輸之強化與監控。碩士論文,國立台灣大學工學院暨醫學院醫學工程學研究所。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23813 | - |
| dc.description.abstract | 本研究利用小鼠耳朵腫瘤模型結合超音波、微氣泡及奈米藥物Doxil探討其對於腫瘤治療的影響。大腸癌CT-26植入小鼠的左右兩耳,待腫瘤生長至15-20 mm3或50 mm3後開始治療,首先以靜脈注射方式給予抗癌藥物Doxil,再給予微氣泡(100 μl/kg),而後立即於腫瘤處施打超音波(1 MHz、2 W/cm2、50% duty cycle、超音波施打總時間60秒)。腫瘤初始治療體積設定為15-20 mm3 (劑量為10 mg/kg Doxil)及50 mm3 (劑量為6 mg/kg Doxil及4 mg/kg Doxil)。實驗設計組包括:控制組、單純施打超音波、施打超音波及微氣泡、抗癌藥物有/無搭配超音波及微氣泡。
研究結果顯示:(1)小腫瘤(15-20 mm3)在接受抗癌藥物搭配超音波及微氣泡之治療後體積先升後降(雙相生長曲線),但體積較大之腫瘤(50 mm3)在接受其治療後體積持續下降(單相生長曲線);(2)對於腫瘤生長抑制,Doxil搭配超音波及微氣泡對腫瘤生長的抑制效果比只給予奈米藥物要來的顯著。(3)Doxil劑量為最終治療結果之重要影響因子。故搭配超音波及微氣泡可能有增強Doxil累積於腫瘤區域之效果,進而抑制腫瘤的生長。 | zh_TW |
| dc.description.abstract | In this study, mouse ear tumor model was employed to investigate the effects of ultrasound (US) sonication with microbubbles (MB) on tumor treatments with liposomal doxorubicin (Doxil). CT26 tumor cells were injected in both ears of the mice. When the tumors grew up to 15-20 mm3 (injected with 10mg/kg Doxil) or 50 mm3 (injected with 6 mg/kg Doxil or 4 mg/kg Doxil), the treatment was executed. Doxil was injected first, then MB (100 μl/kg) injection followed, and finally ultrasound (frequency: 1 MHz; intensity: 2 W/cm2; duty cycle: 50%; duration: 60 s) sonicated on the tumor immediately. Experiments included: control, US only, MB/US, Doxil without and with MB/US groups.
The results showed that: 1) the tumor size increased and then decreased (biphasic growth pattern) for small tumors while decreased only (single-phase) for large tumors in Doxil with MB/US group; 2) for tumor growth suppression, Doxil with MB/US is more significant than Doxil alone during the treatment period; and 3) Doxil dose was the critical factor for the final treatment results. The results indicated that the application of MB/US might enhance the delivery of Doxil into tumor tissue and hence the tumor growth was hindered. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:10:28Z (GMT). No. of bitstreams: 1 ntu-100-R98548010-1.pdf: 1626982 bytes, checksum: 1f8b87227a4f6915bec881613e841fed (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 i
摘要…...……………………………………………………………………........………ii Abstract iii 目錄 iv 圖目錄…...………………………………………………………………………….…..vi 第一章 緒論 ……………………………………………………………………………1 1.1 腫瘤及其血管特性 1 1.2 奈米藥物及其傳輸系統 2 1.3 化學治療 2 1.4 超音波治療 3 1.5 機械指數 5 1.6 研究緣由與目的 5 第二章 實驗設備與材料方法 9 2.1 腫瘤細胞株 9 2.2 實驗動物 9 2.3 奈米抗癌藥物 9 2.4 超音波顯影劑 10 2.5 超音波設備 10 2.6 超音波參數 11 2.7 顯微鏡系統 11 2.8 雷射都普勒血流計 12 2.9 數值統計與分析方法 12 2.10 實驗設計與流程 12 2.10.1 Doxil®有/無搭配空蝕化效應對小腫瘤之治療………....……….12 2.10.2 降低Doxil®劑量搭配空蝕化效應對較大腫瘤之治療…….……13 2.10.3 Doxil®低劑量限值搭配空蝕化效應對較大腫瘤之治療………..14 第三章 結果 …………………………………………………………………….…….21 3.1 Doxil®有/無搭配空蝕化效應對小腫瘤之治療…………..………………21 3.2 降低Doxil®劑量搭配空蝕化效應對較大腫瘤之治療………………..…21 3.2.1 顯微鏡影像……………………………………………………...…21 3.2.2 治療後腫瘤體積大小與時間之關係……………………………...22 3.2.3 雷射都普勒血流計測量腫瘤區域血流的變化…………………...22 3.2.4療程結束後腫瘤組織之H&E染色………………………………..22 3.3 Doxil®低劑量限值搭配空蝕化效應對較大腫瘤之治療.........…………..23 3.3.1 顯微鏡影像………………………………………………………...23 3.3.2 治療後腫瘤體積大小與時間之關係……………………………...23 第四章 討論…………………………………………………………………………...36 4.1 Doxil®有/無搭配空蝕化效應對小腫瘤之治療…………………………..36 4.2 降低Doxil®劑量搭配空蝕化效應治療對較大腫瘤之治療…………….36 4.3 Doxil®低劑量限值搭配空蝕化效應對較大腫瘤之治療………………...38 第五章 結論與未來展望……………………………………………………………...39 參考文獻……………………………………………………………………………….40 | |
| dc.language.iso | zh-TW | |
| dc.title | 奈米抗癌藥物結合超音波搭配微氣泡對小鼠耳朵腫瘤之生長影響 | zh_TW |
| dc.title | Effects of Ultrasound Sonication with Microbubbles on the
Tumor Growth Response in Mouse Ear Model Treated with Anticancer Nanodrug | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝銘鈞,張富雄,吳銘芳 | |
| dc.subject.keyword | 超音波,微氣泡,奈米抗癌藥物,小鼠耳朵腫瘤模型, | zh_TW |
| dc.subject.keyword | Ultrasound,Microbubbles,Nanodrug,Mouse ear tumor model, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
