Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新
dc.contributor.authorYu-Ching Leeen
dc.contributor.author李宇晴zh_TW
dc.date.accessioned2021-06-08T05:10:13Z-
dc.date.copyright2011-07-26
dc.date.issued2011
dc.date.submitted2011-07-15
dc.identifier.citation[1] X. Zhu, Y. Sakka, Y. Zhou, and K. Hirao, “Processing and Properties of Sintered Reaction-Bonded Silicon Nitride with Y2O3-MgSiN2: Effects of Si Powder and LiO2 addition,” Acta Materialia 55 5581-5591 (2007)
[2] D. S. Park, H. D. Kim, and K. T. Lim et al., ”Microstructure of Reaction-Bonded Silicon Nitride Fabricated under Static Nitrogen Pressure,” Mater. Sci. Eng. A 405 158-162 (2005)
[3] X. Zhu, Y. Zhou, and Kiyoshi Hirao, “Processing and Thermal Conductivity of Sintered Reaction-Bonded Silicon Nitride. I: Effect of Si Powder Characteristic,” J. Am. Ceram. Soc., 89 [11] 3331-3339 (2006)
[4] H. Hyuga, K. Yoshida, and N. Kondo et al., “Nitridation Enhancing Effects of ZrO2 on Silicon Powder,” Materials Letters 62 3475-3477 (2008)
[5] F. L. Riley, “Silicon Nitride and Related Materials,” J. Am. Ceram. Soc., 83 [2] 245-265 (2000)
[6] G. Ziegler, L. Heinrich, and G. Wotting, “Review Relationships between Processing , Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 22 3041-3086 (1987)
[7] K. H. Jack, “Nitrogen Ceramics,” Endeavour 11 No. 2 80-87 (1987)
[8] I. Sichert, “Development of Silicon Nitride Substrates with High Thermal Conductivity for Heat Sink Applications Based on Economic Technologies.” ANCeram GmbH & Co. KG, Germany
[9] J. F. Burgess, and C. A. Neugebauer, “The Direct Bonding of Metals to Ceramics by the Gas-Metal Eutectic Method,” J. Electrochem. Soc.: Solid-state science and technology 122 No. 5 688-690 (1975)
[10] S. I. Tanaka, “Direct Bond of Cu to Oxidized Silicon Nitride by Wetting of Molten Cu and Cu(O),” J. Mater. Sci. 45:2181-2187 (2010)
[11] S. T. Kim, C. H. Kim, and J. Y. Park et al., “The Direct Bonding Between Copper and MgO-Doped Si3N4,” J. Mater. Sci. 25 5185-5191 (1990)
[12] C. M. Wang, X. Pan, and M. Ruhle et al., “ Review Silicon Nitride Crystal Structure and Observations of Lattice Defects,” J. Mater. Sci. 31 5281-5298 (1996)
[13] P. Sajgalik, Z. Lences, and M. Hnatko, “Nitrides, ” Ceramics Science and Technology, 2 59-89 (2010)
[14] H. M. Jennings, and M. H. Richman, “Structure, Formation, Mechanisms and Kinetics of Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 11 2087-2098 (1976)
[15] A. J. Moulson, “Review Reaction-Bonded Silicon Nitride: Its Foramation and Properties,” J. Mater. Sci. 14 1017-1051 (1979)
[16] X. Zhu, Y. Zhou, and K. Hirao, “Effexts of Processing Method and Additive Composition on Microstructure and Thermal Conductivity of Si3N4 Ceramics,” J. Euro. Ceram. Soc. 26 711-718 (2006)
[17] B. Lei, O. Babushkin, and R. Warren, “Nitridation Study of Reaction-Bonded Silicon Nitride in situ by High Temperature X-Ray Diffraction,” J. Euro. Ceram. Soc. 17 1113-1118 (1997)
[18] X. Zhu, Y. Zhou, and K. Hirao, “Post-Densification Behavior of Reaction-Bonded Silicon Nitride (SRBSN): Effects of Various Characteristics of RBSN,” J. Mater. Sci. 39 5785-5797 (2004)
[19] R. G. Pigeon, and A. Varma, “ Quantitative Kinetic Analysis of Silicon Nitridation,” J. Mater. Sci. 28 2999-3013 (1993)
[20] H. M. Jennings, “Review on Reactions Between Silicon and Nitrogen: Part 1. Mechanism,” J. Mater. Sci. 18 951-967 (1983)
[21] F. W. Chang, T. H. Liou, and F. M. Tsai, “ The Nitridation Kinetics of Silicon Powder Compacts,” Thermochimica Acta 354 71-80 (2000)
[22] L. K. L. Falk, R. Pompe, and G. L. Dunlop, “Development of Microstructure During the Fabrication of Si3N4 by Nitridation and Pressureless Sintering of Si-Si3N4 Compacts,” J. Mater. Sci. 20 3545-3556 (1985)
[23] H. Hyuga, K. Yoshida, and N. Kondo et al., “Influence of Zirconia Addition on Reaction Bonded Silicon Nitride Produced from Various Silicon Particle Size,” J. Ceram. Soc. Japan, 116 [6] 688-693 (2008)
[24] R. G. Pigeon, A. Varma, and A. E. Miller, “Some Factors Influencing the Formation of Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 28 1919-1936 (1993)
[25] M. Mitomo, “Effect of Fe and Al Additions on Nitridation of Silicon,” J. Mater. Sci. 12 273-276 (1977)
[26] Z. Lences, “Influence of Cr, Fe, Ni and Ti, Additives on the Nitridation Kinetics of Silicon Powder Compact,” Ceram. –Silik. 38 61-67 (1994)
[27] V. Pavarajarn and S. Kimura, “Catalytic Effects of Metals on Direct Nitridation of Silicon,” J. Am. Ceram. Soc., 84 [8] 1669-1674 (2001)
[28] C. G. Cofer and J. A. Lewis, “Chromium Catalysed Silicon Nitridation,” J. Mater. Sci. 29 5880-5886 (1994)
[29] H. Hyuga, K. Yoshida, and N. Kondo et al., “Nitridation behavior of ZrO2 Added Silicon Powder with Different ZrO2 Particle Sizes,” J. Ceram. Soc. Japan, 117 [2] 157-161 (2009)
[30] H. J. Kleebe, W. Braue, and W. Luxem, “Densification Studies of SRBSN with Unstabilized Zirconia by Means of Dilatometry and Electron Microscopy,” J. Mater. Sci. 29 1265-1275 (1994)
[31] H. Hyuga, Y. Zhou, and D. Kusano et al., “Nitridation Behaviors of Silicon Powder Doped with Various Rare Earth Oxides,” J. Ceram. Soc. Japan, 119 [3] 251-253 (2011)
[32] X. Zhu, Y. Zhou, K. Hirao, and Z. Lences, ”Processing and Thermal Conductivity of Sintered Reaction-Bonded Silicon Nitride: (II) Effects of Magnesium Compound and Yttria Additives,” J. Am. Ceram. Soc., 90[6] 1684-2692(2007)
[33] M. Muller, W. Bauer, and R. Knitter, “Processing of Micro-Components Made of Sintered Reaction-Bonded Silicon Nitride (SRBSN). Part 1: Factors Influencing the Reaction-Bonding Process,” Ceram. Int. 35 2577-2585 (2009)
[34] B. T. Lee, and H. D. Kim, “Effect of Sintering Additives on the Nitridation Behavior of Reaction-Bonded Silicon Nitride,” Mater. Sci. Eng. A364 126-131 (2004)
[35] J. R. G. Evans, and A. J. Moulson, “The Effect of Impurities on the Desification of Reaction-Bonded Silicon Nitride (RBSN),” J. Mater. Sci. 18 3721-3728 (1983)
[36] J. S. Lee, J. H. Mun, and B. D. Han et al., “Effect of Raw-Si Particle Size on the Properties of Sintered Reaction-Bonded Silicon Nitride,” Ceram. Int. 30 965-976 (2004)
[37] Y. Zhou, X. Zhu, and K. Hirao et al., “Sintered Reation-Bonded Silicon Nitride with High Thermal Conductivity and High Strength,” Int. J. Appl. Ceram. Technol. 5 [2] 119-126 (2008)
[38] K. Hirao, and Y. Zhou, “Thermal Conductivity, ” Ceramics Science and Technology, 2 667-696 (2010)
[39] T. Fujimura, and S. I. Tanaka, “In-Situ High Temperature X-ray Diffraction Study of Cu/Al2O3 Interface Reaction,” Acta. Mater. 46 No. 9 3057-3061 (1998)
[40] H. Ghasemi, A. H. Kokabi, and M. A. Faghihi Sani, “Alumina-Copper Eutectic Bond Strength: Contribution of Preoxidation, Cuprous Oxides Particles, and Pores,” Mater. Forum 32 90-97 (2008)
[41] H. Ning, J. Ma, and F. Huang et al., “ Preoxidation of the Cu Layer in Direct Bonding Technology,” Appl. Surf. Sci. 211 250-258 (2003)
[42] S. T. Kim, and C. H. Kim,” Interfacial Reaction Product and its Effect on the Strength of Copper to Alumina Eutectic Bonding,” J. Mater. Sci. 27 2061-2066 (1992)
[43] H. Ghasemi, A. H. Kokani, and M. A. Faghihi Sani et al., “Roles of Preoxidation, Cu2O Particles, and Interface Pores on the Strength of Eutectically Bonded Cu/a-Al2O3,” Mater. Des. 30 1098-1102 (2009)
[44] H. He, R. Fu, and D. Wang et al., “A New Method for Preparation of Direct Bonding Copper Substrates on Al2O3,” Mater. Lett. 61 4131-4133 (2007)
[45] A. L. Molisani, and H. N. Yoshimura, “Intermediate Oxide Layers for Direcr Bonding of Copper (DBC) to Aluminum Nitride Ceramic Substrates,” Mater. Sci. Forum 660-661 658-663 (2010)
[46] J. S. Harder, “Advantages and New Development of Direct Bonded Copper Substrates,” Microelectronics Reliability 43 359-365 (2003)
[47] K. Exel, and J. S. Harder, “Water Cooled DBC Direct Bonded Copper Substrates,” IEEE Industrial Electronics Society 2350-2354 (1998)
[48] 顏富士, “粉體、鬚晶和纖維,” 陶瓷技術手冊(上), 經濟部技術處發行 p.37-38
[49] J. H. She, T. Ohji, and P. Mechnich et al., “Phase Development of Y2O3-Doped Reaction-Bonded Mullite Ceramics,” J. Mater. Sci. Lett. 20 2141-4143 (2001)
[50] Y. J. Su, R. W. Trice, and K. T. Faber et al., “ Thermal conductivity, Phase Stability, and Oxidation Resistance of Y2Al5O12 (YAG)/Y2O3-ZrO2 (YSZ) Thermal-Barrier Coating,” Oxidation of metals, 61 Nos.314 253-271 (2004)
[51] S. C. Singhal, “Thermodynamics and Kinetics of Oxidation of Hot-Pressed Silicon Nitride,” J. Mater. Sci. 11 500-509 (1976)
[52] A. G. Evans, amd R. W. Davige, “The Strength and Oxidation of Reaction Sintered Silicon Nitride,” J. Mater. Sci. 5 314-325 (1970)
[53] S. Ding, Y. P. Zeng, and D. Jiang, “Oxidation Bonding of Porous Silicon Nitride Ceramics with High Strength and Low Dielectric Constant,” Mater. Lett. 61 2277-2280 (2007)
[54] C. R. Alejandro, R. S. Antonio, and R. S. Antonio et al., “Estudio Thermodynamico del Sistema SiO2-NiO-Cu2O,” Rev. Latinoam. Metal. Mater. 30 [1] 73-81 (2010)
[55] T. Kurushima, K. Ishizaki, and T. Hamasaki, “Effects of Grain Boundary Phases on the Corrosion of b-SIALON in Molten Copper oxide,” J. Ceram. Soc. Japan, 100 1416-1420 (1992)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23795-
dc.description.abstract由於氮化矽(Si3N4)陶瓷的抗化學腐蝕性及抗熱震性、及在高溫中良好的機械性質和磨耗性質,使氮化矽成為具潛力的高溫結構材。在氮化矽陶瓷的製程中,反應燒結製程能降低原料及製程成本,而反應燒結後產品能維持原有的尺寸和高溫穩定性,因此反應燒結氮化矽被廣泛的研究。在本研究中,將單獨添加氧化鋯(ZrO2)、氧化釔(Y2O3)、和同時添加氧化鋯及氧化釔的矽粉在1400oC下氮化後,觀察不同組成添加劑對反應燒結氮化矽的影響。在只添加氧化鋯的系統中,氮化率在最短的時間內可達到最高,但是由於氧化鋯在反應燒結後還留在氮化矽中,使得此系統的熱傳導係數下降。當系統中只存在氧化釔時,氧化釔會與矽粉表面的氧化矽反應成Y2Si2O7,去除留在氮化矽試片中的氧化矽。在同時添加氧化鋯和氧化釔時,會因為氧化鋯與氧化釔反應而產生鋯-釔-氧的化合物,而降低添加劑促進氮化及去除氧化矽的效應。
在本研究中,同時也探討以直接覆銅(Direct bonded of Cu)的方式將多孔的反應燒結氮化矽與銅片在預氧化後進行接合。直接覆銅的方式已被廣泛運用在氧化鋁基板與銅片的接合上,當到達接合溫度時,會因為銅-氧的共晶點在氧化鋁基板表面形成銅-氧混合物的液相,此液相可潤濕氧化鋁表面進而在氧化鋁基板與銅片之間形成銅-鋁-氧的化合物,在降溫後氧化鋁基板和銅片之間就能結合在一起。然而在銅片和氮化矽之間不會形成銅-矽-氧的化合物,因此銅片和氮化矽間的接合靠的是將氧化銅和氧化亞銅滲入氧化矽中。
zh_TW
dc.description.abstractBecause of the superb chemical and thermal shock resistance, excellent mechanical properties at elevated temperature and good wear properties, silicon nitride (Si3N4) is a promising material for high temperature structural applications. Due to the low price of raw powders, the easy control of dimensions and good thermal stability at high temperature, the reaction bonded silicon nitride (RBSN) has been intensively investigated. In the present study, silicon powder was mixed with three different compositions of additives, ZrO2, Y2O3 and ZrO2-Y2O3, and nitrided at 1400oC. The effects of the additives on the nitridation of silicon compacts were investigated. The addition of ZrO2 shows improvement on nitridation rate and density, but decreases the thermal conductivity. The presence of Y2O3 reduces the amount of silicon oxide through the reaction of SiO2 to form Y2Si2O7. However, the co-doping ZrO2 and Y2O3 system forms the Zr-Y-O compound due to the reaction between ZrO2 and Y2O3. Therefore, the effects on improvement on nitridation are suffered.
The direct bonding method was used in the present study. The porous RBSN compact and Cu plate were pre-oxidized before the direct bonding process. For the RBSN-Cu system, the Si-Cu-O compound is not formed between oxidized RBSN and Cu. The bonding is constructed by the infiltration of CuO and Cu2O into the SiO2 layer, which is formed on the RBSN surface.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:10:13Z (GMT). No. of bitstreams: 1
ntu-100-R98527037-1.pdf: 5847435 bytes, checksum: 4d0967eff694bd8308567f76f4259857 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsChapter 1 Introduction 1
Chapter 2 Literature Survey 3
2-1 Formation and Properties of RBSN 3
2-1-1 Crystal structure of silicon nitride 3
2-1-2 Reaction bonding silicon nitride 7
2-1-3 Influence of temperature on nitridation behavior 12
2-1-4 Influence of Si particle size to nitridation 15
2-1-5 Influence of additives on nitridation 18
2-1-6 Thermal conductivity of silicon nitride 26
2- 2 Bonding between Si3N4 and Cu 30
2-2- 1 Direct bonded Copper method 30
2-2- 2 Direct bonding of Cu and Si3N4 34
Chapter 3 Experimental Procedures 38
3- 1 RBSN Preparation 38
3-1- 1 Processing 38
3-1- 2 Characterization 40
3- 2 Direct Bond Copper 44
3-2- 1 Processing 44
3-2- 2 Characterization 45
Chapter 4 Results 51
4-1 Effects of Additives on RBSN 51
4-1-1 Extent of nitridation 51
4-1-2 Density measurement 52
4-1-3 Phase identification 53
4-1-4 Microstructure characterization 55
4-1-5 Thermal conductivity measurement 60
4-2 Direct Bond Copper with RBSN 62
4-2-1 GDS analysis of oxidized copper plate 62
4-2-2 Phase identification 64
4-2-3 Microstructure characterization 66
4-2-4 Thermal conductivity measurement 74
4-2-5 Four-point bending strength measurement 76
Chapter 5 Discussion 77
5-1 Effects of Additives on RBSN 77
5-1-1 Effects of additives on extent of nitridation 77
5-1-2 Thermal conductivity of RBSN 78
5-2 Directs Bond Copper with RBSN 79
5-2-1 Effects of microstructure on bonding behavior 79
5-2-2 The cracks formed by oxidation of Si3N4 83
5-2-3 Decrease in thermal conductivity 84
5-2-4 Possible mechanism of bonding 87
5-3 General Discussion 94
Chapter 6 Conclusions 95
Chapter 7 Future Work 97
References 98
dc.language.isoen
dc.title添加劑對反應燒結氮化矽的影響及其與銅接合行為之研究zh_TW
dc.titleEffects of Additives on Reaction-Bonded Silicon Nitride and It’s Bonding Characteristic to Copperen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊聰仁,陳錦毅,施劭儒
dc.subject.keyword氮化矽,氮化,添加劑,熱傳導,預氧化,接合,直接覆銅,zh_TW
dc.subject.keywordsilicon nitride,nitridation,additives,thermal conductivity,pre-oxidation,bonding,direct bonding of copper,en
dc.relation.page105
dc.rights.note未授權
dc.date.accepted2011-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved