請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23777完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張正琪 | |
| dc.contributor.author | Jia-Yu Tang | en |
| dc.contributor.author | 唐嘉御 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:09:58Z | - |
| dc.date.copyright | 2011-10-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-19 | |
| dc.identifier.citation | 1. Vokes EE, Weichselbaum RR, Lippman SM, Hong WK. Head and neck cancer. N Engl J Med 1993;328:184-94.
2. Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med 2008;359:1143-54. 3. Wutzl A, Ploder O, Kermer C, Millesi W, Ewers R, Klug C. Mortality and causes of death after multimodality treatment for advanced oral and oropharyngeal cancer. J Oral Maxillofac Surg 2007;65:255-60. 4. Kademani D. Oral cancer. Mayo Clin Proc 2007;82:878-87. 5. Jerjes W, Upile T, Petrie A, Riskalla A, Hamdoon Z, Vourvachis M, et al. Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients. Head Neck Oncol 2010;2:9. 6. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003;3:453-8. 7. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12:895-904. 8. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006;127:679-95. 9. Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5. 10. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 2004;10:1957-66. 11. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23:4051-60. 12. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432:231-5. 13. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432:235-40. 14. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004;18:3016-27. 15. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004;303:95-8. 16. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011-6. 17. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005;123:631-40. 18. Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 2005;19:2979-90. 19. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005;122:553-63. 20. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006;312:75-9. 21. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 2007;17:118-26. 22. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res 2008;36:D154-8. 23. Huppi K, Volfovsky N, Mackiewicz M, Runfola T, Jones TL, Martin SE, et al. MicroRNAs and genomic instability. Semin Cancer Biol 2007;17:65-73. 24. Sciume G, Soriani A, Piccoli M, Frati L, Santoni A, Bernardini G. CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-beta1. Neuro-Oncology 2010;12:701-10. 25. Neville BW, Day TA. Oral cancer and precancerous lesions. CA Cancer J Clin 2002;52:195-215. 26. Chang CC, Lin MT, Lin BR, Jeng YM, Chen ST, Chu CY, et al. Effect of Connective Tissue Growth Factor on Hypoxia-Inducible Factor 1 Degradation and Tumor Angiogenesis. JNCI Journal of the National Cancer Institute 2006;98:984-95. 27. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. 28. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010;466:835-40. 29. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105. 30. Toshio Imai KH, Christopher Haskell, Masataka Baba, Morio Nagira, Miyuki Nishimura, Mayumi Kakizaki, Shin Takagi, Hisayuki Nomiyama, Thomas J. Schall, and Osamu Yoshie. Identification and Molecular Characterization of Fractalkine Receptor CX3CR1, which Mediates Both Leukocyte Migration and Adhesion. Cell 1997;91:521-30. 31. Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell 2006;127:679-95. 32. Selcuklu SD, Donoghue MT, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 2009;37:918-25. 33. Wu B-h, Xiong X-p, Jia J, Zhang W-f. MicroRNAs: New actors in the oral cancer scene. Oral Oncology 2011;47:314-9. 34. Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 2009;15:3998-4008. 35. Avissar M, McClean MD, Kelsey KT, Marsit CJ. MicroRNA expression in head and neck cancer associates with alcohol consumption and survival. Carcinogenesis 2009;30:2059-63. 36. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE, et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer 2010;127:505-12. 37. Liu X, Yu J, Jiang L, Wang A, Shi F, Ye H, et al. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics 2009;6:131-9. 38. Chang KW, Liu CJ, Chu TH, Cheng HW, Hung PS, Hu WY, et al. Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J Dent Res 2008;87:1063-8. 39. Wong TS, Ho WK, Chan JY, Ng RW, Wei WI. Mature miR-184 and squamous cell carcinoma of the tongue. ScientificWorldJournal 2009;9:130-2. 40. Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 2010;16:360-4. 41. Lin SC, Liu CJ, Lin JA, Chiang WF, Hung PS, Chang KW. miR-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral Oncol 2010;46:204-8. 42. White NMA, Fatoohi E, Metias M, Jung K, Stephan C, Yousef GM. Metastamirs: a stepping stone towards improved cancer management. Nature Reviews Clinical Oncology 2010;8:75-84. 43. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 2008;105:3945-50. 44. Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 2010;51:836-45. 45. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65:7065-70. 46. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Reviews Drug Discovery 2010;9:775-89. 47. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. MicroRNA expression in zebrafish embryonic development. Science 2005;309:310-1. 48. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 2006;3:27-9. 49. Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci U S A 2005;102:18017-22. 50. Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, et al. Differences in vertebrate microRNA expression. Proc Natl Acad Sci U S A 2006;103:14385-9. 51. Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 2001;276:37993-8001. 52. Chapman GA, Moores K, Harrison D, Campbell CA, Stewart BR, Strijbos PJ. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci 2000;20:RC87. 53. Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 2003;102:1186-95. 54. Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 1999;163:1628-35. 55. Gevrey JC, Isaac BM, Cox D. Syk is required for monocyte/macrophage chemotaxis to CX3CL1 (Fractalkine). J Immunol 2005;175:3737-45. 56. Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 1998;188:1413-9. 57. Haskell CA, Cleary MD, Charo IF. Unique role of the chemokine domain of fractalkine in cell capture. Kinetics of receptor dissociation correlate with cell adhesion. J Biol Chem 2000;275:34183-9. 58. Goda S, Imai T, Yoshie O, Yoneda O, Inoue H, Nagano Y, et al. CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. J Immunol 2000;164:4313-20. 59. Cambien B, Pomeranz M, Schmid-Antomarchi H, Millet MA, Breittmayer V, Rossi B, et al. Signal transduction pathways involved in soluble fractalkine-induced monocytic cell adhesion. Blood 2001;97:2031-7. 60. Umehara H, Goda S, Imai T, Nagano Y, Minami Y, Tanaka Y, et al. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol Cell Biol 2001;79:298-302. 61. Lauro C, Catalano M, Trettel F, Mainiero F, Ciotti MT, Eusebi F, et al. The chemokine CX3CL1 reduces migration and increases adhesion of neurons with mechanisms dependent on the beta1 integrin subunit. J Immunol 2006;177:7599-606. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23777 | - |
| dc.description.abstract | Purpose: We aim to examine target microRNA(s) interfering cell migration in established advanced migratory oral squamous cell carcinoma (OSCC) cell model, and correlate it with patient clinical status and survival. Underlying mechanism is also investigated.
Experimental design: microRNA profiling was performed in TW2.6 and advanced migratory cells, TW2.6 MS-10, which is selected from TW2.6. Target miRNA was quantitated with RT Q-PCR in 98 OSCC patients, and correlated to the pathological status. By bioinformatic PicTar analysis and IPA functional classification, downstream effector was indentified. Animal spontaneous experimental metastasis was evaluated by xenografting in SCID mice, and examined for lymph nodes metastasis. Results: miR-29b is significantly increased in TW2.6 MS-10. Clinical data revealed that miR-29b expression related to lymph node metastasis and advanced tumor stage (P < 0.05, P < 0.05) in OSCC patients. Furthermore, multivariate analysis showed that miR-29b expression correlated to recurrence and indicated poor survival, which could be used as a prognosis tool. The in vitro study showed that miR-29b could promote OSCC cell migration ability (P < 0.05). miR-29b has been shown to down-regulate CX3CL1, a cell-cell adhesion regulator, which played the essential role in miR-29b-regulated OSCC cell migration machinery. Additionally, CX3CL1 expression was shown to relate to lymph node metastasis and early tumor stage (P < 0.05, P < 0.05) and highly negatively correlate with miR-29b in OSCC patients (P < 0.05). Conclusions: miR-29b, as an oncomir, promotes cell migration through CX3CL1 suppression from transcriptional level in OSCC. miR-29b provides a powerful tool for prognosis and potent therapeutic intervention. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:09:58Z (GMT). No. of bitstreams: 1 ntu-100-R98450007-1.pdf: 2457236 bytes, checksum: 8e895931383c0e72096d0bbc63b94d66 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgments (謝辭) ii Abstract in Chinese (中文摘要) iii Abstract in English iv Contents vi Introduction 1 Materials and Methods 5 Results 13 I. miR-29b positively correlates with advanced TNM stage and poor survival in OSCC patients 13 II. miR-29b manipulates migration in OSCC cells 15 III. CX3CL1 is the downstream target gene in miR-29b-regulated OSCC cell motility 16 IV. CX3CL1 negatively correlates with miR-29b expression in clinical 19 V. miR-29b inhibits CX3CL1 controls miR-29b functions 20 Discussion 23 Figures 28 Figure 1. miR-29b correlates to advanced TNM stage, lymph node involvement and poor survival probability in OSCC patients. 28 Figure 2. Modulation of miR-29b controlls migration ability. 31 Figure 3. CX3CL1 expression level shows inverse correlation with miR-29b. 35 Figure 4. CX3CL1 is a direct downstream target of miR-29b. Modulation of CX3CL1 restores the migration ability controlled by miR-29b. 38 Figure 5. CX3CL1 negatively correlates with advanced TNM stage and lymph node involvement in OSCC patients. 41 Figur 6. Knockdown of miR-29b decreases tumor metastasis in vivo, and CX3CL1 silencing phenocopies metastatic phenotype of high miR-29b cells. 43 Supplemental figures 45 Supplemental Figure 1. TW2.6 MS-10 possesses enhanced migration ability compared to TW2.6. 45 Supplemental Figure 2. Cell proliferation in SAS/pmiRZip-SC, SAS/amiR-29b, SAS/amiR-29b/shCX3CL1 cells. 46 Supplemental Figure 3. CX3CL1 expression levels in SAS stable clones. 47 Supplemental Figure 4. CX3CL1 is not a downstream target of miR-29a and miR-29c. 48 Tables 49 Table 1. Association of miR-29b expression with clinical and pathological features in 98 OSCC patients. 49 Table 2. RT-PCR and cloning primer sequence 50 References 51 | |
| dc.language.iso | en | |
| dc.title | 探討微小核醣核酸-29b型於人類口腔鱗狀上皮細胞癌移行能力之影響 | zh_TW |
| dc.title | The Effect of miR-29b on Tumor Migration in Human Oral Squamous Cell Carcinoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭彥彬,鄭永銘,林本仁 | |
| dc.subject.keyword | 口腔鱗狀上皮細胞癌,細胞移行,微小核醣核酸,miR-29b,CX3CL1, | zh_TW |
| dc.subject.keyword | oral squamous cell carcinoma,migration,microRNA,miR-29b,CX3CL1, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-19 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
