Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23724
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信雄(Hsin-Hsiung Chen)
dc.contributor.authorShu-Ping Liaoen
dc.contributor.author廖書屏zh_TW
dc.date.accessioned2021-06-08T05:07:44Z-
dc.date.copyright2011-07-06
dc.date.issued2011
dc.date.submitted2011-05-26
dc.identifier.citation1. APHA, 2005. Standard methods for the examination of water and wastewater, 21th ed. American Public Health Association, Washington, DC.
2. Bachand PAM, Horne AJ., 2000. Denitrification in constructed free-water surface wetlands: I. Very high nitrate removal rates in a macrocosm study. Ecol. Eng.14,9-15.
3. Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 35, 11–17.
4. Calheiros CSC, Rangel AOSS, Castro PML., 2009. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresour Technol. 100,3205-13.
5. Chen TY, Kao CM, Yeh TY, Chien HY, Chao AC., 2006. Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study. Chemosphere. 64,497–502.
6. Chung, A.K.C., Wu, Y., Tam, N.F.Y., Wong, M.H., 2008. Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecol. Eng. 32, 81–89.
7. Cicek N, Lambert S, Venema HD, Snelgrove KR, Bibeau EL, Grosshans R. ,2006. Nutrient removal and bio-energy production from NetleyeLibau Marsh at Lake Winnipeg through annual biomass harvesting. Biomass Bioenergy. 30,529-36.
8. Cook J, Beyea J., 2000. Bioenergy in the United States: progress and possibilities. Biomass Bioenergy. 18,441-55.
9. Cronk JK, Fennessy MS., 2001. Wetland plants biology and ecology. New York, Lewis.
10. Deren CW, Snyder GH, Tai PYP, Turick CE, Chynoweth DP., 1991. Biomass production and biochemical methane potential of seasonally-flooded inter-generic and inter-specific Saccharum hybrids. Bioresour Technol. 35,179-84.
11. Dubbe DR, Garver EG, Pratt DC., 1988. Production of cattail (Typha spp.) biomass in Minnesota, USA. Biomass. 17,79-104.
12. EPB, 2009. Shulin Incineration Plant. Environmental protection bureau (EPB) of Taipei county government, http://122.147.151.40/slp/ english/me_1.htm.
13. Fan, C., Chang, F.C., Ko, C.H., Sheu, Y.S., Teng, C.J., Chang, T.C., 2009. Urban pollutant removal by a constructed riparian wetland before typhoon damage and after reconstruction. Ecol. Eng. 35, 424–435.
14. Gottschall, N., Boutin, C., Crolla, A., Kinsley, C., Champagne, P., 2007. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario. Canada. Ecol. Eng. 29, 154–163.
15. Greenway, M., 1997. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Sci. Technol. 35, 135–142.
16. Greenway, M., Woolley, A., 1999. Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol. Eng. 12, 39–55.
17. Hafner SD, Jewell WJ., 2006. Predicting nitrogen and phosphorus removal in wetlands due todetritus accumulation: A simple mechanistic model. Ecol Eng. 27,13–21.
18. Harrington, R., McInnes, R., 2009. Integrated Constructed Wetlands (ICW) for livestock wastewater management. Bioresour. Technol. 100, 5498–5505.
19. Headley TR, Huett DO, Davison L., 2003. Seasonal variation in phosphorus removal processes within reed beds-mass balance investigations. Water Sci Technol. 48,59–66.
20. Kadlec, R.H., 2008. The effects of wetland vegetation and morphology on nitrogen processing. Ecol. Eng. 33, 126–141.
21. Kadlec, R.H., Knight, R.L., 1996. Treatment wetlands. CRC Press, Lewis Publishers, Boca Raton, Florida.
22. Kadlec RH., 2007. Comparison of free water and horizontal subsurface wetlands. In: Mander U , Koiv M, Vohla C, editors. Second international symposium on wetland pollutant dynamics and control - WETPOL 2007, Tartu, Estonia. p. 9-11.
23. Kadlec RH, Wallace SD., 2008. Treatment wetlands. 2nd ed. Boca Raton, Florida: Lewis Publishers.
24. Kadlec RH., 1997. Deterministic and stochastic aspects of constructed wetland performance and design. Water Sci Technol. 35,149–56.
25. Kadlec RH., 2000. The inadequacy of first-order treatment wetland models. Ecol Eng. 15, 105–19.
26. Kohler EA, Poole VL, Reicher ZJ, Turco RF., 2004. Nutrient, metal, and pesticide removal during storm and nonstorm events by a constructed wetland on an urban golf course. Ecol Eng. 23,285–98.
27. Larue, C., Korboulewsky, N., Wang, R., Mevy, J.P., 2010. Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations. Bioresour. Technol. 101,7951–7957.
28. Maine, M.A., Sune, N., Hadad, H., Sanchez, G., Bonetto, C., 2007. Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere 68, 1105–1113.
29. Mars, R., Mathew, K., Ho, G., 1999. The role of the submergent macrophyte Triglochin huegelii in domestic greywater treatment. Ecol. Eng. 12, 57–66.
30. Mitsch, W.J., Gosselink, J.G., 2000. Wetlands, 3rd ed. John Wiley and Sons, New York.
31. Nahlik, A.M., Mitsch, W.J., 2010. Methane emission from created riverine wetlands. Wetlands 30, 783–793.
32. Novak JM, Szogi AA, Stone KC, Watts DW, Johnson MH., 2007. Dissolved phosphorus export from an animal waste impacted in-stream wetland: Response to tropical storm and hurricane disturbance. J Environ Qual. 36,790–800.
33. Oovel, M., Tooming, A., Mauring, T., Mander, U., 2007. Schoolhouse wastewater
purification in a LWA-filled hybrid constructed wetland in Estonia. Ecol. Eng. 29, 17–26.
34. Paine LK, Todd LP, Undersander DJ, Rineer KC, Bartelt GA, Temple SA, et al., 1996. Some ecological and socio-economic considerations for biomass energy crop production. Biomass Bioenergy. 10,231-342.
35. Pathikonda S, Ackleh AS, Hasenstein KH, Mopper S., 2009. Invasion, disturbance, and competition: modeling the fate of coastal plant populations. Conserv Biol. 23,164–73.
36. Pitt R., 1985. Characterizing and Controlling Urban Runoff through Street and Sewerage Cleaning. . EPA/600/S2-85/038Cincinnati, Ohio: US EPA. p. 467.
37. Pratt DC, Dubbe DR, Garver EG, Linton PJ., 1984. Wetland biomass production: emergent aquatic management options and evaluations. Solar Energy Research Institute. Contract report SERI/STR-231-2383.
38. Quanrud DM, Karpiscak MM, Lansey KE, Arnold RG., 2004. Transformation of effluent organic matter during subsurface wetland treatment in the Sonoran Desert. Chemosphere. 54,777–88.
39. Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of wetlands. CRC Press, New York.
40. Reddy, K.R., D’Angelo, E.M., 1996. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Sci. Technol. 35, 1–10.
41. Reddy KR, Smith WH., 1987. Aquatic plants for water treatment and resource recovery. Orlando: Magnolia Publishing. p. 687.
42. Romero JA, Comin FA, Garcia C., 1999. Restored wetlands as filters to remove nitrogen. Chemosphere. 39,323–32.
43. Rousseau DPL, Vanrolleghem PA, De Pauw N., 2004. Constructed wetlands in Flanders: a performance analysis. Ecol Eng.23,151–63.
44. Scholz M., 2006. Wetland systems to control urban runoff. Amsterdam: Elsevier.
45. Schuyt, K., Brander, L., 2004. Living waters: Conserving the source of life. Gland/Amsterdam, Switzerland/the Netherlands: World wide fund for nature (WWF) and the Swiss agency for the environment, forests and landscape (SAEFL).
46. Scholz, M., 2006. Wetland systems to control urban runoff. Elsevier, Amsterdam. p.360.
47. Sheng C, Azevedo JLT., 2005. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 28,499-507.
48. Song ZW, Zheng ZP, Li J, Sun XF, Han XY, Wang W, et al., 2006. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecol Eng. 26,272–82.
49. Strecker E, Urbonas B, Quigley M, Howell J, Hesse T., 2002. Urban Stormwater BMP Performance Monitoring — A Guidance Manual for Meeting the National Stormwater BMP Database Requirements. EPA/821/B-02/001Washington, DC: US EPA.
50. Tanner, C.C., 1996. Plants for constructed wetlands–A comparison of the growth and nutrient uptake characteristics of eight emergent species. Ecol. Eng. 7, 59–83.
51. Tanner, C.C., 2001. Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewaters. Wetlands Ecol. Manage. 9, 49–73.
52. Thullen JS, Sartoris JJ, Walton WE., 2002. Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production. Ecol Eng. 18, 441-57.
53. Turner RE, Baustian JJ, Swenson EM, Spicer JS., 2006. Wetland sedimentation from Hurricanes Katrina and Rita. Science. 314,449–52.
54. Verhoeven, J.T.A., Meuleman, A.F.M., 1999. Wetlands for wastewater treatment: opportunities and limitations. Ecol. Eng. 12, 5–12.
55. Vymazal J, Kropfelova L., 2008. Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Dordrecht, Springer.
56. US EPA., 1999. Manual for constructed wetlands treatment of municipal wastewaters. Cincinnati: National Risk Management Research Laboratory. p. 166. Contract EPA/625/R-99/010.
57. Wilcox DA, Meeker JE, Hudson PL, Armitage BJ, Black MG, Uzarski DG., 2002. Hydrologic variability and the application of index of biotic integrity metrics to wetlands: a great lakes evaluation. Wetlands. 22,588–615.
58. Xu, D., Xu, J.M., Wu, J.J., Muhammad, A., 2006. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere 63,344–352.
59. Yang YP, Yen SH, Lin CK., 2001. Illustrated guide to aquatic plants of Taiwan. Taipei, Taiwan: Council of Agriculture.
60. Zhang L, Scholz M, Mustafa A, Harrington R., 2009. Application of the self-organizing map as a prediction tool for an integrated constructed wetland agroecosystem treating agricultural runoff. Bioresour Technol. 100,559-65.
61. Zhang, Z., Rengel, Z., Meney, K., 2008. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms. Chemosphere 72, 1823–1828.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23724-
dc.description.abstract熱帶與亞熱帶的環境可能因颱風或暴風雨形成的氾濫導致重大改變,這些天災影響人工濕地處理污染物的效能被大多數在溫帶進行的研究所忽視。因此本研究調查淡水河流域的新海橋第二期人工濕地於2007年柯羅莎(KROSA)颱風干擾前後濕地系統污染去除效能的差異,結果顯示在柯羅莎颱風干擾之前,新海二期表面流式人工濕地有效移除64.3%的生化需氧量、98.9%氨氮與39.5%的總磷。柯羅莎颱風在濕地範圍造成大規模的氾濫並且沖走多數水生植物族群的地上部,並在每個處理單元的底部遺留淤積物,儘管溼地系統內的水流動在颱風過後隨即恢復,但是其污染去除效能僅有37.7%的生化需氧量、35.1%氨氮與31.8%的總磷。比較颱風干擾前後人工濕地處理的水質,結果顯示污染物去除量的效能被颱風影響,因此建立高流量的引道並評估其他預防方式將可保護易受颱風干擾區域的人工濕地。
3.29公頃的新海二期人工濕地每天處理4000立方公尺的家庭廢水與城市逕流,其蘊含的生物量具有生產生質能源和碳吸存的潛力,栽植多種類的水生植物也能促進生物多樣性。於2007年3月至2008年3月期間調查人工濕地內植物地上部的每季生物量變化,發現水生植物地上部生物量與碳存量累積於2007年9月達到高峰,其總量分別為16,737公斤與6,185公斤。柯羅莎颱風於2007年10月淹沒新海二期人工濕地,但水生植物在沒有人為補植下卻有明顯恢復,水丁香比颱風干擾前位於優勢的香蒲更快地在溼地內恢復覆蓋,觀察水生植物族群於颱風干擾後自行恢復覆蓋的能力,顯示在人工濕地收獲生物量的可行性,試驗區域內收獲的生物量80%灰化後可產生11,846千瓦小時的能源以供1個月之用。
新海二期人工濕地系統污染處理效能與水生植物地上部植物組織內的總磷和總氮累積的相關性,19種水生植物中含量最佳的為蕹菜 (Ipomoea aquatica)與台灣水龍(Ludwigia x taiwanensis) ,總氮含量分別為3.82%與3.52% (w/w),其總磷含量則分別為0.64%與0.83% (w/w),整體植物累積的吸收量從2007年3月至2007年9月達到高峰,總氮含量從213公斤增加到403公斤,總磷含量則從41公斤增加至75公斤。2007年3月至2008年3月間總氮累積於植物組織內和進流汙染物去除的比率分別為1.57%、2.76%、1.51%與3.2%,同一期間的總磷累積於植物組織內和進流汙染物去除的比率分別為1.71%、8.0%、0.58%與10.1%,水生植物地上部吸收溼地系統內營養物質的移除量於生長季節則更為明顯。
zh_TW
dc.description.abstractTyphoons and hurricanes in subtropical/tropical regions can induce significant environmental changes. It may be a mass flooding or inundations. However, the damage to the pollutant removal efficiencies of constructed wetlands brought about by these natural disturbances has been neglected in major studies conducted in temperate climates. Therefore, this study compares the pollutant removal performance of the Hsin-Hai Bridge phase Ⅱ constructed wetland in the Danshui River Basin, before and after the system was inundated with flooding from Typhoon Krosa in 2007. The pollutant removal performance of the free water surface (FWS) constructed wetland was investigated monthly from September 2006 to April 2008. Results of the study demonstrated that this FWS wetland effectively removed 64.3% BOD, 98.9% NH4–N, and 39.5% Total-P before Typhoon Krosa. However, the extensive flooding caused by Typhoon Krosa swept over most of the aboveground plant community and deposited the sediment onto the bottom of each compartment. Subsequently, reduced pollutant removal efficiencies were observed. Only 37.7% BOD, 35.1% NH4–N, and 31.8% Total-P were removed after this event, although the flow regime was immediately restored. Comparing the water quality data for the FWS wetland before and after Typhoon Krosa revealed the immediate, quantitative damage to the pollutant removal performance caused by the typhoon's inundation. Consequently, a high-flow bypass and additional preventive measures would protect any constructed wetland in areas subject to typhoons.
Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. Recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month.
This study investigated the correlations between the system treatment efficiencies and total nitrogen (TN) and total phosphorus (TP) accumulations of aboveground tissues of the wetland macrophytes. Among 19 emergent macrophytes studied, the optimal TN contents, 3.82% and 3.52% (w/w) were found for water spinach (Ipomoea aquatica) and Ludwigia x taiwanensis; while the optimal TP contents were found for the above two macrophytes at 0.64% and 0.83% (w/w). The accumulations of total plant TN and TP uptakes increased from 213 to 403 kg and 41 to 75 kg from March 2007 to the peak at September 2007, respectively. The TN ratios between plant tissue accumulations and the removals from the influents were 1.57%, 2.76%, 1.51% and 3.2% from March 2007 to March 2008. In the same period, the TP ratios between plant tissue accumulations and the removals from influents were 1.71%, 8.0%, 0.58% and 10.1%. The roles of the uptakes by aboveground portions of emergent macrophytes in system nutrient removals from the influents were more significant during growth seasons.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:07:44Z (GMT). No. of bitstreams: 1
ntu-100-R95625007-1.pdf: 2215203 bytes, checksum: 107b44e10c1e5933e1b3e0da7aaf0a2b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Abstract in Chinese…………………………………i
Abstract in English…………………………………iii
Chapter1. Introduction……………………………1
Chapter2. Methods…………………………………8
2.1. Site background……………………………8
2.2.Configuration and water quality analysis…10
2.3. Vegetation delineation and analysis methods………………………………………………15
2.4. Analysis of biomass and nitrogen content fundamental properties…………………………16
Chapter3. Results and discussions……………………………………………………………………………17
3.1.Pollutant removal effectiveness……………………………17
3.1.1. BOD removal……………………………17
3.1.2. Ammonium removal……………………………21
3.1.3. Nutrient removal………………………………23
3.1.4. Total phosphorus removal……………………………25
3.2. Variation of emergent macrophyte community………………………………27
3.2.1. Changes of biomass and macrophyte surface coverage……………27
3.2.2. Elemental contents of the aboveground portions for emergent macrophytes…………41
3.3. System performance evaluation……………………………61
Chapter4. Conclusion……………………………69
References………………………………71
dc.language.isoen
dc.title新海橋人工溼地水生植物生長與水質淨化效能zh_TW
dc.titleGrowth of Aquatic Plants and Effciencies of Water Treatment by the Hsin-Hai Constructed Wetlanden
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor柯淳涵(Chun-Han Ko)
dc.contributor.oralexamcommittee蕭英倫,謝蕙蓮,王義仲
dc.subject.keyword人工濕地,污染物去除效能,挺水植物,颱風,生質能,碳吸存,zh_TW
dc.subject.keywordConstructed wetlands,Pollutant removal efficiency,Emergent macrophytes,Typhoon,Bioenergy,Carbon sequestration,en
dc.relation.page74
dc.rights.note未授權
dc.date.accepted2011-05-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved