Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23594
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭明良(Min-Liang Kuo)
dc.contributor.authorChia-Feng Lien
dc.contributor.author李嘉峰zh_TW
dc.date.accessioned2021-06-08T05:04:26Z-
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-01-31
dc.identifier.citationArumugam, T., and Logsdon, C.D. S100P: a novel therapeutic target for cancer. Amino
Acids.
Bremnes, R.M., Veve, R., Hirsch, F.R., and Franklin, W.A. (2002). The E-cadherin
cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung
Cancer 36, 115-124.
Chen, M.F., Keng, P.C., Shau, H., Wu, C.T., Hu, Y.C., Liao, S.K., and Chen, W.C.
(2006). Inhibition of lung tumor growth and augmentation of radiosensitivity by
decreasing peroxiredoxin I expression. Int J Radiat Oncol Biol Phys 64, 581-591.
Cullinan, S.B., Gordan, J.D., Jin, J., Harper, J.W., and Diehl, J.A. (2004). The
Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative
stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24, 8477-8486.
D'Autreaux, B., and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms
that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8, 813-824.
Etokebe, G.E., Kuchler, A.M., Haraldsen, G., Landin, M., Osmundsen, H., and Dembic,
Z. (2009). Family-with-sequence-similarity-46, member A (Fam46a) gene is expressed
in developing tooth buds. Arch Oral Biol 54, 1002-1007.
Furukawa, M., and Xiong, Y. (2005). BTB protein Keap1 targets antioxidant
transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol
25, 162-171.
Gibadulinova, A., Oveckova, I., Parkkila, S., Pastorekova, S., and Pastorek, J. (2008).
Key promoter elements involved in transcriptional activation of the cancer-related gene
coding for S100P calcium-binding protein. Oncol Rep 20, 391-396.
Hann, C.L., and Rudin, C.M. (2008). Management of small-cell lung cancer:
incremental changes but hope for the future. Oncology (Williston Park) 22, 1486-1492.
Hayes, J.D., and McMahon, M. (2009). NRF2 and KEAP1 mutations: permanent
activation of an adaptive response in cancer. Trends Biochem Sci 34, 176-188.
Herbst, R.S., Heymach, J.V., and Lippman, S.M. (2008). Lung cancer. N Engl J Med
359, 1367-1380.
Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., and Yamamoto,
M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by
Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13, 76-86.
Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., and Thun, M.J. (2009). Cancer statistics,
2009. CA Cancer J Clin 59, 225-249.
Kwak, M.K., Itoh, K., Yamamoto, M., and Kensler, T.W. (2002). Enhanced expression
of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant
39
response element-like sequences in the nrf2 promoter. Mol Cell Biol 22, 2883-2892.
Landry, J., Sharov, A.A., Piao, Y., Sharova, L.V., Xiao, H., Southon, E., Matta, J.,
Tessarollo, L., Zhang, Y.E., Ko, M.S., et al. (2008). Essential role of chromatin
remodeling protein Bptf in early mouse embryos and embryonic stem cells. PLoS Genet
4, e1000241.
Lum, C.T., Liu, X., Sun, R.W., Li, X.P., Peng, Y., He, M.L., Kung, H.F., Che, C.M., and
Lin, M.C. Gold(III) porphyrin 1a inhibited nasopharyngeal carcinoma metastasis in vivo
and inhibited cell migration and invasion in vitro. Cancer Lett 294, 159-166.
Maeda, R., Yoshida, J., Hishida, T., Aokage, K., Nishimura, M., Nishiwaki, Y., and
Nagai, K. Late recurrence of non-small cell lung cancer more than 5 years after
complete resection: incidence and clinical implications in patient follow-up. Chest 138,
145-150.
McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., and Hayes, J.D. (2004).
Redox-regulated turnover of Nrf2 is determined by at least two separate protein
domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J
Biol Chem 279, 31556-31567.
McWilliams, A., Lam, B., and Sutedja, T. (2009). Early proximal lung cancer diagnosis
and treatment. Eur Respir J 33, 656-665.
Miao, W., Hu, L., Scrivens, P.J., and Batist, G. (2005). Transcriptional regulation of
NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon
receptor-xenobiotic response element signaling pathway: direct cross-talk between
phase I and II drug-metabolizing enzymes. J Biol Chem 280, 20340-20348.
Motohashi, H., Katsuoka, F., Engel, J.D., and Yamamoto, M. (2004). Small Maf
proteins serve as transcriptional cofactors for keratinocyte differentiation in the
Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci U S A 101, 6379-6384.
Nguyen, T., Sherratt, P.J., Nioi, P., Yang, C.S., and Pickett, C.B. (2005). Nrf2 controls
constitutive and inducible expression of ARE-driven genes through a dynamic pathway
involving nucleocytoplasmic shuttling by Keap1. J Biol Chem 280, 32485-32492.
Nishizuka, S., Ramalingam, S., Spurrier, B., Washburn, F.L., Krishna, R., Honkanen, P.,
Young, L., Tsutomu, S., Steeg, P.S., and Austin, J. (2008). Quantitative protein network
monitoring in response to DNA damage. J Proteome Res 7, 803-808.
Numazawa, S., and Yoshida, T. (2004). Nrf2-dependent gene expressions: a molecular
toxicological aspect. J Toxicol Sci 29, 81-89.
Ohta, T., Iijima, K., Miyamoto, M., Nakahara, I., Tanaka, H., Ohtsuji, M., Suzuki, T.,
Kobayashi, A., Yokota, J., Sakiyama, T., et al. (2008). Loss of Keap1 function activates
Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68, 1303-1309.
Padmanabhan, B., Tong, K.I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, M., Kang,
40
M.I., Kobayashi, A., Yokoyama, S., and Yamamoto, M. (2006). Structural basis for
defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21,
689-700.
Rachakonda, G., Sekhar, K.R., Jowhar, D., Samson, P.C., Wikswo, J.P., Beauchamp,
R.D., Datta, P.K., and Freeman, M.L. Increased cell migration and plasticity in
Nrf2-deficient cancer cell lines. Oncogene 29, 3703-3714.
Rodriguez, E., and Lilenbaum, R.C. Small cell lung cancer: past, present, and future.
Curr Oncol Rep 12, 327-334.
Shibata, T., Kokubu, A., Gotoh, M., Ojima, H., Ohta, T., Yamamoto, M., and Hirohashi,
S. (2008a). Genetic alteration of Keap1 confers constitutive Nrf2 activation and
resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358-1368,
1368 e1351-1354.
Shibata, T., Ohta, T., Tong, K.I., Kokubu, A., Odogawa, R., Tsuta, K., Asamura, H.,
Yamamoto, M., and Hirohashi, S. (2008b). Cancer related mutations in NRF2 impair its
recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci U S
A 105, 13568-13573.
Shyu, R.Y., Huang, S.L., and Jiang, S.Y. (2003). Retinoic acid increases expression of
the calcium-binding protein S100P in human gastric cancer cells. J Biomed Sci 10,
313-319.
Singh, A., Misra, V., Thimmulappa, R.K., Lee, H., Ames, S., Hoque, M.O., Herman,
J.G., Baylin, S.B., Sidransky, D., Gabrielson, E., et al. (2006). Dysfunctional
KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3, e420.
Solis, L.M., Behrens, C., Dong, W., Suraokar, M., Ozburn, N.C., Moran, C.A., Corvalan,
A.H., Biswal, S., Swisher, S.G., Bekele, B.N., et al. Nrf2 and Keap1 abnormalities in
non-small cell lung carcinoma and association with clinicopathologic features. Clin
Cancer Res 16, 3743-3753.
Su, M.C., Yang, J.J., Su, C.C., Hsin, C.H., and Li, S.Y. (2009). Identification of novel
variants in the Myosin VIIA gene of patients with nonsyndromic hearing loss from
Taiwan. Int J Pediatr Otorhinolaryngol 73, 811-815.
Travis, W.D., Travis, L.B., and Devesa, S.S. (1995). Lung cancer. Cancer 75, 191-202.
Wang, J., Zhang, M., Zhang, L., Cai, H., Zhou, S., Zhang, J., and Wang, Y. Correlation
of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to
clinicopathologic features and survival. J Surg Res 164, e99-105.
Wang, X.J., Hayes, J.D., and Wolf, C.R. (2006). Generation of a stable antioxidant
response element-driven reporter gene cell line and its use to show redox-dependent
activation of nrf2 by cancer chemotherapeutic agents. Cancer Res 66, 10983-10994.
Yang, L., Zeng, W., Li, D., and Zhou, R. (2009). Inhibition of cell proliferation,
41
migration and invasion by DNAzyme targeting MMP-9 in A549 cells. Oncol Rep 22,
121-126.
Yesner, R., and Carter, D. (1982). Pathology of carcinoma of the lung. Changing
patterns. Clin Chest Med 3, 257-289.
Zhang, D.D., Lo, S.C., Cross, J.V., Templeton, D.J., and Hannink, M. (2004). Keap1 is a
redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
Mol Cell Biol 24, 10941-10953.
Zhang, P., Singh, A., Yegnasubramanian, S., Esopi, D., Kombairaju, P., Bodas, M., Wu,
H., Bova, S.G., and Biswal, S. Loss of Kelch-like ECH-associated protein 1 function in
prostate cancer cells causes chemoresistance and radioresistance and promotes tumor
growth. Mol Cancer Ther 9, 336-346.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23594-
dc.description.abstractKelch-like ECH-associated protein 1(KEAP1)是一個負責調控細胞內氧化還原的銜接蛋白,功能為將cul3 ubiquitin ligase 上的ubiqutin 銜接到KEAP1 下游結合的蛋白而進行蛋白降解,而根據研究NRF2 為KEAP1 的主要下游調控蛋白,因此若細胞中的KEAP1 減少會造成NRF2 增加並累積在細胞核中,NRF2 本身是一個轉錄分子,累積的NRF2 會結合到具有antioxidant responsive element(ARE)的啟動子上,進而增加抗氧化酵素或phase II 酵素的表現量,另外研究指出,NRF2 下游基因PRDX1 的表現會促進肺癌細胞生長、轉移、以及抗化療能力,因此在我們觀察到KEAP1 的表現量和lung cancer 的轉移有相反的趨勢時,我們便猜測或許
KEAP1是藉由降解調控NRF2 進而使下游基因改變而影響肺癌細胞的轉移能力。
在本篇研究中,我們首先將238 名以及167 名病患組織進行KEAP1 以及NRF2 免疫組織染色,統計分析結果發現,高KEAP1 表現的病患具有較好的存活率並且較常在早期的肺癌中發現,相反的,高NRF2 表現的病患具有較差的存活率並且在晚期的肺癌中表現量越高,而在in vitro 實驗當中我們發現KEAP1 的表現會抑制肺癌的轉移能力,並且在單獨抑制NRF2 表現量時也會抑制肺癌的轉移能力,因此我們進一步結合兩種shRNA 來證明KEAP1 是藉由調控NRF2 表現量來調控轉移能力,接著藉由microarray 來分析過量KEAP1 表現以及抑制NRF2 表現的兩組肺癌細胞中交集的基因,我們發現S100P 表現量同時在兩組別都受到抑制,S100P在研究中已被證實對多種癌細胞具有促進轉移能力,最後我們嘗試使用GST-pulldown 方法發現NRF2 可能是藉由和TBPA 的連接一起結合到S100P 的啟動子上,進而促使S100P 的過量表現而造成癌細胞轉移能力的增加,結論地來說,我們的實驗結果發現KEAP1 會調控癌細胞的轉移,並且在肺癌機制上我們發現是藉由降解NRF2 以及轉錄調控S100P 來達成調控轉移的目的。
zh_TW
dc.description.abstractKelch-loke ECH-associated protein 1(KEAP1) is a redox-dependent substrate adaptor protein which interact with cul3 ubiquitin ligase complex to degradate NRF2(NF-E2-related factor 2). The decreased expression of KEAP1 will enhance NRF2 expression and accumulate in the nucleus, where binding with antioxidant responsive element(ARE) and activate the antioxidative enzyme expression. Here we observed the KEAP1 expression had inversely correlation with cell migration ability. So we suggesting that the NRF2 target gene may provide advantage for cancer cell progression and may control by KEAP1. In this study, KEAP1 and NRF2 protein expression in 238 and 167 lung cancer specimens was investigated immunohiistochemically and was significantly coorelated with survival and stage. We found KEAP1 high expression in early stage whether NRF2 is high expression in late stage. Also, KEAP1 had ability to inhibit many cancer cells migration and NRF2 had inversely correlation with KEAP1 in migration ability. Further we confirm the degradation interaction between KEAP1 and NRF2 in lung cancer cells and confirm the KEAP1 inhibit cancer cell migration is caused by degradation of NRF2. By microarray analysis, we first found KEAP1-NRF2 signaling pathway to connect with S100P protein which facilitate cancer metastasis in many cancer type. Moreover, the NRF2 protein may combine with TBPA which a binding protein of S100P promoter region. In conclusion, our data suggested that KEAP1 may mediate lung cancer migration ability through degradation of NRF2 which transcriptional control the S100P expression.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:04:26Z (GMT). No. of bitstreams: 1
ntu-100-R97447010-1.pdf: 5623662 bytes, checksum: 602fb82fc0a94d83878f88a2ca47c46d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsIntroduction------------------------------------------------------------------------------------------1
Material and Methods------------------------------------------------------------------------------7
Results
1. KEAP1 expressed in early stage tumors and positively correlated with patients
survival of lung cancer.-------------------------------------------------------------------18
2. KEAP1 expression negative correlated with in vitro migratory abilities in human
lung, colon, and breast cancer cell lines-----------------------------------------------19
3. Whole KEAP1 and NRF2 gene sequence of CL1-0 and CL1-5 WT
cells.-----------------------------------------------------------------------------------------20
4. Normal function of KEAP1-NRF2 signaling pathway in CL1-0 and CL1-5
cells.-----------------------------------------------------------------------------------------22
5. The BTB domain of KEAP1 determined degradation-related mechanism and the
cell migration ability.---------------------------------------------------------------------23
6. The NRF2 expression is negatively correlated with KEAP1 and almost locate in
the nucleus.--------------------------------------------------------------------------------23
7. Knockdown of NRF2 result in migration abilities decrease.------------------------24
8. NRF2 participate in migration ability change determined by KEAP1-------------25
9. NRF2 expressed in advanced stage tumors and inversely correlated with patients
VII
survival of lung cancer.-------------------------------------------------------------------26
10. The clinicopathology of NRF2 IHC staining have inversely correlation
comparing with KEAP1 staing in the same series of
patients.-------------------------------------------------------------------------------------27
11. Microarray analysis of KEAP1 overexpression and NRF2 knockdown in CL1-5
cells.-----------------------------------------------------------------------------------------28
12. S100P signaling pathway were selected for KEAP1 and NRF2 intersection by
microarray analysis.----------------------------------------------------------------------29
13. Directly knockdown of S100P inhibit the CL1-5 cell migration
ability.---------------------------------------------------------------------------------------29
14. The distribution of KEAP1, NRF2, and S100P in the CL1-0 and CL1-5
cells.-----------------------------------------------------------------------------------------30
15. S100P participate in migration ability change determined by KEAP1-NRF2
pathway.------------------------------------------------------------------------------------30
16. S100P promoter binding protein TBPA were pull-downed by GST-NRF2
protein.--------------------------------------------------------------------------------------31
Discussion------------------------------------------------------------------------------------------32
Reference-------------------------------------------------------------------------------------------38
Figure, Table and Figure legends---------------------------------------------------------------42
dc.language.isoen
dc.title探討Kelch-Like ECH-Associated Protein 1( Keap1)抑制肺腺癌移動之分子機制zh_TW
dc.titleThe Mechanism of Kelch-Like ECH-Associated Protein 1( Keap1) in Lung Adenocarcinoma Migrationen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭宏昇(Hsiao, Michael),譚慶鼎(Ching-Ting Tan),夏興國(Shine-Gwo Shiah)
dc.subject.keyword肺腺癌,轉移,KEAP1,臨床,zh_TW
dc.subject.keywordLung cancer,KEAP1,clinical,metastasis,en
dc.relation.page77
dc.rights.note未授權
dc.date.accepted2011-01-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved