Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23592
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭明良(Min-Liang Kuo)
dc.contributor.authorYi-Shen Linen
dc.contributor.author林奕伸zh_TW
dc.date.accessioned2021-06-08T05:04:24Z-
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-07
dc.identifier.citationReference
1. Forastiere A, Koch W, Trotti A, Sidransky D. Head and neck cancer. N Engl J Med 2001; 345: 1890-900.
2. Mao L, Hong WK, Papadimitrakopoulou VA. Focus on head and neck cancer. Cancer Cell 2004; 5: 311-6.
3. Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol 2006; 7: 77-82.
4. Marsit CJ, McClean MD, Furniss CS, Kelsey KT. Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma. Int J Cancer 2006; 119: 1761-6.
5. Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37: 391-400.
6. Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med 2008; 359: 1143-54.
7. Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358: 1148-59.
8. Waggoner D. Mechanisms of disease: epigenesis. Semin Pediatr Neurol 2007; 14: 7-14.
9. Holliday R. The inheritance of epigenetic defects. Science 1987; 238: 163-70.
10. Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 2006; 75: 243-69.
11. Hammond SM. RNAi, microRNAs, and human disease. Cancer Chemother Pharmacol 2006; 58 Suppl 1: s63-8.
12. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter
- 26 -
hypermethylation. N Engl J Med 2003; 349: 2042-54.
13. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70.
14. Fahrner JA, Eguchi S, Herman JG, Baylin SB. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 2002; 62: 7213-8.
15. Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev 2002; 12: 198-209.
16. Tachibana M, Sugimoto K, Nozaki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002; 16: 1779-91.
17. Fritsch L, Robin P, Mathieu JR, et al. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol Cell; 37: 46-56.
18. Jenuwein T, Laible G, Dorn R, Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci 1998; 54: 80-93.
19. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001; 276: 25309-17.
20. Brown SE, Campbell RD, Sanderson CM. Novel NG36/G9a gene products encoded within the human and mouse MHC class III regions. Mamm Genome 2001; 12: 916-24.
21. Dong KB, Maksakova IA, Mohn F, et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J 2008; 27: 2691-701.
- 27 -
22. Feldman N, Gerson A, Fang J, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 2006; 8: 188-94.
23. Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M. Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 2006; 66: 9009-16.
24. Lee SH, Kim J, Kim WH, Lee YM. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 2009; 28: 184-94.
25. Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW. 5-Aza-2'-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene 2007; 26: 77-90.
26. Tachibana M, Ueda J, Fukuda M, et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 2005; 19: 815-26.
27. Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J 2008; 27: 2681-90.
28. Ueda J, Tachibana M, Ikura T, Shinkai Y. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J Biol Chem 2006; 281: 20120-8.
29. Huang J, Dorsey J, Chuikov S, et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem; 285: 9636-41.
30. Kim JK, Esteve PO, Jacobsen SE, Pradhan S. UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 2009; 37:
- 28 -
493-505.
31. Duan Z, Zarebski A, Montoya-Durango D, Grimes HL, Horwitz M. Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol Cell Biol 2005; 25: 10338-51.
32. Nishio H, Walsh MJ. CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc Natl Acad Sci U S A 2004; 101: 11257-62.
33. Mulligan P, Westbrook TF, Ottinger M, et al. CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation. Mol Cell 2008; 32: 718-26.
34. Chaturvedi CP, Hosey AM, Palii C, et al. Dual role for the methyltransferase G9a in the maintenance of beta-globin gene transcription in adult erythroid cells. Proc Natl Acad Sci U S A 2009; 106: 18303-8.
35. Smallwood A, Esteve PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 2007; 21: 1169-78.
36. Shirato H, Ogawa S, Nakajima K, et al. A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9. J Biol Chem 2009; 284: 733-9.
37. Chen X, El Gazzar M, Yoza BK, McCall CE. The NF-kappaB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. J Biol Chem 2009; 284: 27857-65.
38. Gyory I, Wu J, Fejer G, Seto E, Wright KL. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol 2004; 5: 299-308.
39. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer
- 29 -
epigenetics. Mutat Res 2008; 647: 21-9.
40. Luo XG, Zou JN, Wang SZ, Zhang TC, Xi T. Novobiocin decreases SMYD3 expression and inhibits the migration of MDA-MB-231 human breast cancer cells. IUBMB Life; 62: 194-9.
41. Kondo Y, Shen L, Suzuki S, et al. Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol Res 2007; 37: 974-83.
42. Watanabe H, Soejima K, Yasuda H, et al. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int 2008; 8: 15.
43. Kondo Y, Shen L, Ahmed S, et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE 2008; 3: e2037.
44. Chen MW, Hua KT, Kao HJ, et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res; 70: 7830-40.
45. He C, Klionsky DJ. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu Rev Genet 2009.
46. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463-77.
47. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5: 726-34.
48. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer 2007; 7: 961-7.
49. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672-6.
- 30 -
50. Kubicek S, O'Sullivan RJ, August EM, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007; 25: 473-81.
51. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004; 36: 2445-62.
52. Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008; 90: 313-23.
53. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007; 6: 304-12.
54. Misra-Press A, Rim CS, Yao H, Roberson MS, Stork PJ. A novel mitogen-activated protein kinase phosphatase. Structure, expression, and regulation. J Biol Chem 1995; 270: 14587-96.
55. Ma L, Teruya-Feldstein J, Bonner P, et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 2007; 67: 7106-12.
56. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121: 179-93.
57. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415-28.
58. Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 1999; 59: 3730-40.
59. Chang Y, Zhang X, Horton JR, et al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol 2009; 16: 312-7.
60. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone
- 31 -
deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194-202.
61. Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2004; 101: 18030-5.
62. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006; 6: 729-34.
63. Chang YY, Neufeld TP. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 2009; 20: 2004-14.
64. Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007; 26: 3203-13.
65. Armes JE, Hammet F, de Silva M, et al. Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogene 2004; 23: 5697-702.
66. Chitale D, Gong Y, Taylor BS, et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009; 28: 2773-83.
67. Britson JS, Barton F, Balko JM, Black EP. Deregulation of DUSP activity in EGFR-mutant lung cancer cell lines contributes to sustained ERK1/2 signaling. Biochem Biophys Res Commun 2009; 390: 849-54.
68. Sieben NL, Oosting J, Flanagan AM, et al. Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. J Clin Oncol 2005; 23: 7257-64.
69. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291-310.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23592-
dc.description.abstract癌症的形成往往是由於關鍵性的基因突變導致正常的細胞繁衍失衡。除了DNA的鹼基序列發生突變外,表觀遺傳修飾亦扮演重要角色參與調控基因的表現。其在特定組蛋白殘基上透過不同的共價鍵修飾作用調控基因的轉錄。研究已知在胚胎發育與癌症發生的過程中,組蛋白H3上第九個胺基酸離胺酸 (Lysine 9)的甲基化對於基因的表現與否扮演關鍵性的角色。G9a為一哺乳動物的組蛋白甲基轉移酶,負責催化組蛋白H3K9的甲基化。已知G9a透過組蛋白H3K9的甲基化抑制某些腫瘤抑制基因的轉錄,研究也顯示在缺氧的情形下會增加G9a的表現與H3K9的甲基化進而調控基因的轉錄。在肺癌與攝護腺癌的相關研究中也指出G9a扮演維繫腫瘤惡化的角色。先前本實驗室研究發現 G9a高度表現在不同類型癌症病人的腫瘤組織中,其中包括頭頸部的癌症。因此,我們企圖探討G9a在頭頸癌發展過程中的重要性及其調控機轉。
在本篇研究中,我們發現相較於腫瘤周邊的正常組織,G9a高度表現在病人的腫瘤組織中,顯示G9a可能參與調控腫瘤的生成。實驗中利用干擾性核醣核酸抑制G9a的表現,結果降低了癌細胞的存活率與細胞貼附性生長的能力,在動物實驗中我們也發現當G9a的表現受到抑制會減緩腫瘤的生成。以G9a的專一性抑制劑BIX-01294阻斷G9a的組蛋白甲基轉移酶活性,也觀察到癌細胞的存活率有下降的情形,顯示G9a的酵素活性參與了G9a調控腫瘤生成的能力。有趣的是,我們意外發現G9a參與了細胞自噬 (Autophagy)作用。利用干擾性核醣核酸抑制G9a的表現,我們發現與細胞自噬相關的蛋白LC3的表現量有上升的趨勢,相同的結果也反應在加入G9a的專一性抑制劑上,我們認為G9a可能透過影響細胞自噬相關的訊息傳遞路徑來達到促進腫瘤的生成。綜合以上實驗結果,顯示G9a在頭頸癌的發生過程中扮演重要的角色,未來可進一步釐清G9a與上下游可能分子的交互作用,以便於有機會運用在癌症之臨床檢測與治療上。
zh_TW
dc.description.abstractTumorigenesis is considered to progress through a multistep process from normal histologic features to carcinoma features underlying genetic instabilities including the loss of heterozygocity (LOH) of certain chromosomes and the mutations of certain key genes. Epigenetic was later defined as heritable changes in gene expression that are not due to any alteration in the DNA sequence. Methylation of specific histone residues has important regulatory functions in chromatin organization and gene transcription, which have been linked to the silencing of a number of critical tumor suppressor genes during tumor formation. G9a is a histone methyltransferase (HMTase) for histone H3 lysine 9 dimethylation (H3K9me2), and it was reported that G9a-mediated H3K9me2 aberrantly repressed tumor suppressor genes in breast cancer. Downregulation of G9a was also demonstrated markedly inhibiting cell growth in prostate cancer. Therefore, G9a might serve as a potent therapeutic target. Here, we evaluate the role of G9a in tumor growth together with the G9a enzymatic activity inhibitor BIX-01294 in HNSCC.
Exposure of HNSCC cell lines to BIX-01294 resulted in inhibition of cell growth and anchorage-independent growth, and similar results were also observed in G9a knockdown cells. Moreover, in vivo animal model also showed that G9a knockdown results in growth inhibition of tumor cells. Interestingly, we found several specific features characteristic of autophagy after G9a knockdown and BIX-01294 treatment, including appearance of membranous vacuoles and recruitment of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes. In conclusion, our findings provide a potential role of G9a involved in regulation of autophagy signaling pathway that further to affect tumorigenesis in head and neck cancer.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:04:24Z (GMT). No. of bitstreams: 1
ntu-100-R97447004-1.pdf: 3305302 bytes, checksum: aced3d9623d30ca84b10b7734d4e4485 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContent
中文摘要........................................................................................................................3
Abstract........................................................................................................................4
Introduction..................................................................................................................5
Materials and Methods..............................................................................................10
Results........................................................................................................................16
Discussion....................................................................................................................22
Reference....................................................................................................................26
Figures and figure legends........................................................................................33
Tables.........................................................................................................................48
dc.language.isoen
dc.title探討組蛋白甲基轉移酶G9a在頭頸癌中參與腫瘤生成與細胞自噬之分子機制zh_TW
dc.titleThe Role of Histone Methyltransferase G9a in Tumorigenesis and Autophagy of Head and Neck Canceren
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭宏昇(Michael Hsiao),夏興國(Shine-Gwo Shiah),譚慶鼎(Ching-Ting Tan)
dc.subject.keyword腫瘤生成,表觀遺傳,細胞自噬,組蛋白甲基轉移&#37238,G9a,zh_TW
dc.subject.keywordTumorigenesis,Epigenetics,Autophagy,Histone methyltransferase G9a,en
dc.relation.page48
dc.rights.note未授權
dc.date.accepted2011-02-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
3.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved