Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏伯勳
dc.contributor.authorWei-Syun Huangen
dc.contributor.author黃湋勛zh_TW
dc.date.accessioned2021-06-08T05:04:12Z-
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-10
dc.identifier.citation1. World Health Organization. & Global Tuberculosis Programme. (Global tuberculosis control : WHO report. (Global Tuberculosis Programme, Geneva), p v.
2. Murray PRRKS, Pfaller, M.A. (2005) Medical Microbiology, 5th edition, Elsevier Mosby.
3. Casanova JL, Schurr E, Abel L, & Skamene E (2002) Forward genetics of infectious diseases: immunological impact. Trends Immunol 23(10):469-472.
4. Casanova JL & Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581-620.
5. Manabe YC & Bishai WR (2000) Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat Med 6(12):1327-1329.
6. Honer zu Bentrup K & Russell DG (2001) Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol 9(12):597-605.
7. James PE, Grinberg OY, Michaels G, & Swartz HM (1995) Intraphagosomal oxygen in stimulated macrophages. J Cell Physiol 163(2):241-247.
8. Bellamy R, et al. (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 97(14):8005-8009.
9. Kramnik I, Dietrich WF, Demant P, & Bloom BR (2000) Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97(15):8560-8565.
10. Pan H, et al. (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434(7034):767-772.
11. Sternsdorf T, Jensen K, Reich B, & Will H (1999) The nuclear dot protein SP100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J Biol Chem 274(18):12555-12566.
12. Bottomley MJ, et al. (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8(7):626-633.
13. Bloch DB, et al. (2000) SP110 localizes to the PML-SP100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol 20(16):6138-6146.
14. Kadereit S, Gewert DR, Galabru J, Hovanessian AG, & Meurs EF (1993) Molecular cloning of two new interferon-induced, highly related nuclear phosphoproteins. J Biol Chem 268(32):24432-24441.
15. Ascoli CA & Maul GG (1991) Identification of a novel nuclear domain. J Cell Biol 112(5):785-795.
16. Ishov AM, Stenberg RM, & Maul GG (1997) Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 138(1):5-16.
17. Wang ZG RD, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP. (1998) PML is essential for
multiple apoptotic pathways. Nat Genet 20(3):266-72.
18. Doucas V, Tini M, Egan DA, & Evans RM (1999) Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci USA 96(6):2627-2632.
19. Seeler J-S MA, Sitterlin D, Transy C, Dejean A. (1998) Interaction of SP100 and HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc Natl Acad Sci USA. 95(13):7316-21. .
20. Bloch D B CJ-D, Orth D, Rosenzweig A, Bloch K D. (1999) Structural and functional hetereogeneity of nuclear bodies. Mol Cell Biol 19(6):4423-30..
21. Aasland R, Gibson TJ, & Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20(2):56-59 .
22. Dhalluin C, et al. (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491-496 .
23. Tosh K, et al. (2006) Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proc Natl Acad Sci U S A 103(27):10364-10368 .
24. Roscioli T, et al. (2006) Mutations in the gene encoding the PML nuclear body protein SP110 are associated with immunodeficiency and hepatic veno-occlusive disease. Nat Genet 38(6):620-622 .
25. Cliffe ST, et al. (2007) The first prenatal diagnosis for veno-occlusive disease and immunodeficiency syndrome, an autosomal recessive condition associated with mutations in SP110. Prenat Diagn 27(7):674-676 .
26. Nicewonger J, Suck G, Bloch D, & Swaminathan S (2004) Epstein-Barr virus (EBV) SM protein induces and recruits cellular SP110b to stabilize mRNAs and enhance EBV lytic gene expression. J Virol 78(17):9412-9422 .
27. Watashi K, et al. (2003) Modulation of retinoid signaling by a cytoplasmic viral protein via sequestration of SP110b, a potent transcriptional corepressor of retinoic acid receptor, from the nucleus. Mol Cell Biol 23(21):7498-7509 .
28. Isaacs A & Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147(927):258-267 .
29. Pelicano L & Chelbi-Alix MK (1998) [Interferon and retinoic acid in the treatment of human cancer: mechanisms of action]. Bull Cancer 85(4):313-318.
30. Kerr IM & Brown RE (1978) pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A 75(1):256-260.
31. Zhou A, et al. (1998) Impact of RNase L overexpression on viral and cellular growth and death. J Interferon Cytokine Res 18(11):953-961.
32. Le Roy F, et al. (2001) The 2-5A/RNase L/RNase L inhibitor (RLI) [correction of (RNI)] pathway regulates mitochondrial mRNAs stability in interferon alpha-treated H9 cells. J Biol Chem 276(51):48473-48482.
33. Carpten J, et al. (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30(2):181-184.
34. Bisbal C & Silverman RH (2007) Diverse functions of RNase L and implications in pathology. Biochimie 89(6-7):789-798.
35. Gan H, et al. (2008) Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 9(10):1189-1197.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23578-
dc.description.abstractTuberculosis (TB) is one of the most important infectious diseases in the world. According to the epidemiological statistics, one-third of the world population is estimated to be infected with Mycobacterium tuberculosis (MTB) which causes approximatedly 8 million new cases of tuberculosis globally each year and results in about 2 million TB-related deaths annually. The majority of individuals infected with Mycobacterium tuberculosis remains asymptomatic and noninfectious, and only 10% will progress to active tuberculosis. There are many factors involved in the risk of individual infection and development of TB, and these include the interaction of the host body and it's pathogens, stress, malnutrition, concomitant infections (for example HIV) and senescence. Evidence indicates that the susceptibility of host to MTB is associated with host immunity and genetic variation. Until now, the relationship between host resistance to TB and genetic variation has remained unclear.
In previous studies, a genetic locus on mouse chromosome 1, named sst1 (supersusceptibility to tuberculosis 1), controlling the host resistance and susceptibility to tuberculosis was mapped. Furthermore, a gene, Ipr1 (intracellular pathogen resistance 1), within the sst1 locus was identified. Ipr1 is upregulated in macrophages resistant to MTB but not in the sst1 susceptible microphages. Therefore, Ipr1 gene may be participated in innate immunity in mouse models of MTB infection and in the cellular regulatory mechanism of disease onset.
The SP110 nuclear body protein (SP110) is the closest human homologue of the mouse IPR1 protein. SP110 protein family has 3 major isoforms: SP110a, SP110b and SP110c. The alternative splicing makes different isoforms of SP110; however, the differences of roles and functions among these isoforms are still unclear. Thus, in this study, we investigated the characteristics and functional differences among the isoforms of SP110 proteins. For this purpose, we constructed the eGFP-SP110 expression vector and co-transfected with four lentiviral structural gene into HEK293T cell line to generate lentiviral particles containing our target genes. Then, we used dual-promoter lentiviral system to transduce human THP1 cell line with the lentiviral particles to generate a stable clone, in which the expression of eGFP-SP110a was regulated by the Tet-on system. After treatment with doxycycline, the expression of eGFP-SP110a protein was induced, and the confocal images showed that eGFP-SP110a protein was mainly localized in the nucleus. In the previous studies, we found that the expression of eGFP-SP110b/c protein was increased after treatment with IFN, probably through the increase of protein stability. Thus, we examined whether SP110a protein has the same characteristics as SP110b/c proteins and found that the phenomena of SP110a were the same with the latter. In addition, by coimmunoprecipitation, we found that some proteins binding with SP110a/b/c protein were pulled down with an anti-eGFP antibody, including OAS1 (2, 5-oligoadenylate synthetase 1). The proteins interacting with eGFP-SP110a/b/c will be further characterized by proteomics approaches. We will identify the proteins interacting with SP110a by LC-MS/MS analysis and compare the protein complex profiles with that of SP110b/c.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:04:12Z (GMT). No. of bitstreams: 1
ntu-100-R97442021-1.pdf: 1147639 bytes, checksum: b8febb7663b268b885f7310daeef3ab1 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents論文口試委員審定書..................................................i
中文摘要............................................................ii
Abstract ...........................................................iv
目 錄..............................................................vi
第一章 緒 論 1
第一節 結核病的介紹 1
1.1 結核分枝桿菌 2
1.2 結核分枝桿菌在宿主體內的存活 2
1.3 結核分枝桿菌引起的免疫反應 3
1.4 基因多型性與結核分枝桿菌發病的感受性 3
第二節 Nuclear body protein SP110 5
2.1 PML-SP100 細胞核體 5
2.2 SP110 蛋白的結構 7
2.3 SP110 異構型 8
第三節 2,5-oligoadenylate synthetase 1(OAS 1)/RNase L pathway 11
第四節 慢病毒載體系統 13
第二章 實驗材料與方法 14
第一節 實驗材料 14
1.1 試劑與溶液 14
1.2 培養基與培養液 17
1.3 細胞株 18
1.4 質體 18
第二節 實驗方法 19
2.1 JM109 勝任細胞的製備 19
2.2 SP110a 慢病毒載體的構築 19
2.3 慢病毒的製備 20
2.4 慢病毒的定量 20
2.5 慢病毒的轉導 21
2.6 免疫磁珠篩選細胞 21
2.7 流式細胞儀分析 22
2.8 篩選帶有 eGFP-SP110a 基因的穩定細胞株 22
2.9 以雷射共軛焦顯微鏡觀察 SP110a 蛋白質在細胞內的分佈 22
2.10 SP110 基因的細胞轉染 23
2.11 免疫共沉澱 23
2.12 蛋白質分析 24
第三章 實驗結果 26
第一節 重組質體構築的結果 26
第二節 慢病毒的生產與定量 26
第三節 病毒感染細胞的結果 27
第四節 純化分離穩定細胞株的結果 27
第五節 eGFP-SP110a 蛋白質在細胞內的分布和表現情形 28
第六節 質體轉染細胞後用西方轉漬法偵測 OAS 蛋白 28
第四章 討 論 30
第一節 病毒載體系統表現外源基因 30
第二節 慢病毒感染不同細胞之探討 30
第三節 建立誘導型 eGFP-SP110a 穩定細胞株 31
第四節 SP110 蛋白參與 OAS1/RNase L 路徑調控可能的機制 32
第五章 圖表與說明 34
第六章 參考文獻 44
dc.language.isozh-TW
dc.title核蛋白SP110a特性之研究zh_TW
dc.titleCharacterization of Nuclear Protein SP110aen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳美齡,邱浩傑
dc.subject.keyword核蛋白,zh_TW
dc.subject.keywordnuclear protein,en
dc.relation.page47
dc.rights.note未授權
dc.date.accepted2011-02-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved