請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23576完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉秀慧(Shiou-Hwei Yeh) | |
| dc.contributor.author | Sheng-Han Wang | en |
| dc.contributor.author | 王聖涵 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:04:11Z | - |
| dc.date.copyright | 2011-03-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-02-10 | |
| dc.identifier.citation | [1] J. F. Perz, et al., 'The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide,' J Hepatol, vol. 45, pp. 529-38, Oct 2006.
[2] D. Lavanchy, 'Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention,' J Clin Virol, vol. 34 Suppl 1, pp. S1-3, Dec 2005. [3] H. S. Te and D. M. Jensen, 'Epidemiology of hepatitis B and C viruses: a global overview,' Clin Liver Dis, vol. 14, pp. 1-21, vii, Feb 2010. [4] D. S. Chen, 'Toward elimination and eradication of hepatitis B,' J Gastroenterol Hepatol, vol. 25, pp. 19-25, Jan 2010. [5] B. Tang, et al., 'Hepatitis B viremia is associated with increased risk of hepatocellular carcinoma in chronic carriers,' J Med Virol, vol. 72, pp. 35-40, Jan 2004. [6] M. W. Yu, et al., 'Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men,' J Natl Cancer Inst, vol. 93, pp. 1644-51, Nov 7 2001. [7] M. H. Chang, et al., 'Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: a 20-year follow-up study,' J Natl Cancer Inst, vol. 101, pp. 1348-55, Oct 7 2009. [8] C. Seeger and W. S. Mason, 'Hepatitis B virus biology,' Microbiol Mol Biol Rev, vol. 64, pp. 51-68, Mar 2000. [9] N. Moolla, et al., 'Regulatory elements of hepatitis B virus transcription,' J Viral Hepat, vol. 9, pp. 323-31, Sep 2002. [10] M. Lai and Y. F. Liaw, 'Chronic hepatitis B: past, present, and future,' Clin Liver Dis, vol. 14, pp. 531-46, Aug 2010. [11] J. Lupberger and E. Hildt, 'Hepatitis B virus-induced oncogenesis,' World J Gastroenterol, vol. 13, pp. 74-81, Jan 7 2007. [12] B. Rehermann and M. Nascimbeni, 'Immunology of hepatitis B virus and hepatitis C virus infection,' Nat Rev Immunol, vol. 5, pp. 215-29, Mar 2005. [13] C. Neuveut, et al., 'Mechanisms of HBV-related hepatocarcinogenesis,' J Hepatol, vol. 52, pp. 594-604, Apr 2010. [14] H. Tang, et al., 'The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication,' J Virol, vol. 79, pp. 5548-56, May 2005. [15] H. Tang, et al., 'Molecular functions and biological roles of hepatitis B virus x protein,' Cancer Sci, vol. 97, pp. 977-83, Oct 2006. [16] M. J. Bouchard and R. J. Schneider, 'The enigmatic X gene of hepatitis B virus,' J Virol, vol. 78, pp. 12725-34, Dec 2004. [17] M. J. Bouchard, et al., 'Calcium signaling by HBx protein in hepatitis B virus DNA replication,' Science, vol. 294, pp. 2376-8, Dec 14 2001. [18] Z. Xu, et al., 'Enhancement of hepatitis B virus replication by its X protein in transgenic mice,' J Virol, vol. 76, pp. 2579-84, Mar 2002. [19] V. V. Keasler, et al., 'Enhancement of hepatitis B virus replication by the regulatory X protein in vitro and in vivo,' J Virol, vol. 81, pp. 2656-62, Mar 2007. [20] H. C. Wang, et al., 'Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis,' Cancer Sci, vol. 97, pp. 683-8, Aug 2006. [21] M. W. Yu, et al., 'Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men,' J Natl Cancer Inst, vol. 97, pp. 265-72, Feb 16 2005. [22] C. M. Lee, et al., 'Age, gender, and local geographic variations of viral etiology of hepatocellular carcinoma in a hyperendemic area for hepatitis B virus infection,' Cancer, vol. 86, pp. 1143-50, Oct 1 1999. [23] M. W. Yu, et al., 'Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma,' J Natl Cancer Inst, vol. 92, pp. 2023-8, Dec 20 2000. [24] C. M. Chiu, et al., 'Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level,' Proc Natl Acad Sci U S A, vol. 104, pp. 2571-8, Feb 20 2007. [25] M. W. Yu, et al., 'Role of reproductive factors in hepatocellular carcinoma: Impact on hepatitis B- and C-related risk,' Hepatology, vol. 38, pp. 1393-400, Dec 2003. [26] W. H. Liu, et al., 'MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells,' Gastroenterology, vol. 136, pp. 683-93, Feb 2009. [27] E. Villa, et al., 'Estrogen receptor classification for hepatocellular carcinoma: comparison with clinical staging systems,' J Clin Oncol, vol. 21, pp. 441-6, Feb 1 2003. [28] E. Villa, et al., 'Natural history of inoperable hepatocellular carcinoma: estrogen receptors' status in the tumor is the strongest prognostic factor for survival,' Hepatology, vol. 32, pp. 233-8, Aug 2000. [29] E. Villa, et al., 'Type of estrogen receptor determines response to antiestrogen therapy,' Cancer Res, vol. 56, pp. 3883-5, Sep 1 1996. [30] W. E. Naugler, et al., 'Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production,' Science, vol. 317, pp. 121-4, Jul 6 2007. [31] E. P. Gelmann, 'Molecular biology of the androgen receptor,' J Clin Oncol, vol. 20, pp. 3001-15, Jul 1 2002. [32] S. Nilsson, et al., 'Mechanisms of estrogen action,' Physiol Rev, vol. 81, pp. 1535-65, Oct 2001. [33] S. T. Pearce and V. C. Jordan, 'The biological role of estrogen receptors alpha and beta in cancer,' Crit Rev Oncol Hematol, vol. 50, pp. 3-22, Apr 2004. [34] R. N. Dhir, et al., 'Sexually dimorphic regulation of hepatic isoforms of human cytochrome p450 by growth hormone,' J Pharmacol Exp Ther, vol. 316, pp. 87-94, Jan 2006. [35] D. J. Waxman and M. G. Holloway, 'Sex differences in the expression of hepatic drug metabolizing enzymes,' Mol Pharmacol, vol. 76, pp. 215-28, Aug 2009. [36] C. J. Chen, et al., 'Hepatitis B virus DNA levels and outcomes in chronic hepatitis B,' Hepatology, vol. 49, pp. S72-84, May 2009. [37] H. Farza, et al., 'Hepatitis B surface antigen gene expression is regulated by sex steroids and glucocorticoids in transgenic mice,' Proc Natl Acad Sci U S A, vol. 84, pp. 1187-91, Mar 1987. [38] S. Breidbart, et al., 'Hormonal regulation of hepatitis B virus gene expression: influence of androgen receptor,' Pediatr Res, vol. 34, pp. 300-2, Sep 1993. [39] Y. Almog, et al., 'Estrogen suppresses hepatitis B virus expression in male athymic mice transplanted with HBV transfected Hep G-2 cells,' Antiviral Res, vol. 19, pp. 285-93, Oct 1 1992. [40] H. L. Wu, et al., 'Temporal aspects of major viral transcript expression in Hep G2 cells transfected with cloned hepatitis B virus DNA: with emphasis on the X transcript,' Virology, vol. 185, pp. 644-51, Dec 1991. [41] K. S. Bramlett, et al., 'Repression of androgen-regulated gene expression by dominant negative androgen receptors,' Mol Cell Endocrinol, vol. 183, pp. 19-28, Oct 25 2001. [42] D. Y. Lin, et al., 'Negative modulation of androgen receptor transcriptional activity by Daxx,' Mol Cell Biol, vol. 24, pp. 10529-41, Dec 2004. [43] D. J. Schodin, et al., 'Analysis of mechanisms that determine dominant negative estrogen receptor effectiveness,' J Biol Chem, vol. 270, pp. 31163-71, Dec 29 1995. [44] K. Kim, et al., 'Domains of estrogen receptor alpha (ERalpha) required for ERalpha/Sp1-mediated activation of GC-rich promoters by estrogens and antiestrogens in breast cancer cells,' Mol Endocrinol, vol. 17, pp. 804-17, May 2003. [45] J. Lausen, et al., 'Naturally occurring mutations in the human HNF4alpha gene impair the function of the transcription factor to a varying degree,' Nucleic Acids Res, vol. 28, pp. 430-7, Jan 15 2000. [46] A. Kamiya, et al., 'Hepatocyte nuclear factors 1alpha and 4alpha control expression of proline oxidase in adult liver,' FEBS Lett, vol. 578, pp. 63-8, Dec 3 2004. [47] Y. S. Lu, et al., 'Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma,' Hepatology, vol. 46, pp. 1119-30, Oct 2007. [48] L. R. Huang, et al., 'An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection,' Proc Natl Acad Sci U S A, vol. 103, pp. 17862-7, Nov 21 2006. [49] F. Isken, et al., 'Deficiency of glucose-dependent insulinotropic polypeptide receptor prevents ovariectomy-induced obesity in mice,' Am J Physiol Endocrinol Metab, vol. 295, pp. E350-5, Aug 2008. [50] S. H. Yeh, et al., 'Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis,' J Hepatol, vol. 41, pp. 659-66, Oct 2004. [51] J. F. Nelson, et al., 'A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology,' Biol Reprod, vol. 27, pp. 327-39, Sep 1982. [52] M. P. Waalkes, et al., 'Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero,' J Natl Cancer Inst, vol. 96, pp. 466-74, Mar 17 2004. [53] J. A. DeLoia, et al., 'Developmental regulation of hepatitis B surface antigen expression in two lines of hepatitis B virus transgenic mice,' J Virol, vol. 63, pp. 4069-73, Sep 1989. [54] G. Verrijdt, et al., 'Selective DNA recognition by the androgen receptor as a mechanism for hormone-specific regulation of gene expression,' Mol Genet Metab, vol. 78, pp. 175-85, Mar 2003. [55] F. Stossi, et al., 'Estrogen receptor alpha represses transcription of early target genes via p300 and CtBP1,' Mol Cell Biol, vol. 29, pp. 1749-59, Apr 2009. [56] Y. Ye, et al., 'ERalpha suppresses slug expression directly by transcriptional repression,' Biochem J, vol. 416, pp. 179-87, Dec 1 2008. [57] B. A. Kaipparettu, et al., 'Estrogen-mediated downregulation of CD24 in breast cancer cells,' Int J Cancer, vol. 123, pp. 66-72, Jul 1 2008. [58] K. J. Higgins, et al., 'Vascular endothelial growth factor receptor-2 expression is down-regulated by 17beta-estradiol in MCF-7 breast cancer cells by estrogen receptor alpha/Sp proteins,' Mol Endocrinol, vol. 22, pp. 388-402, Feb 2008. [59] F. Stossi, et al., 'Estrogen-occupied estrogen receptor represses cyclin G2 gene expression and recruits a repressor complex at the cyclin G2 promoter,' J Biol Chem, vol. 281, pp. 16272-8, Jun 16 2006. [60] S. Oesterreich, et al., 'Estrogen-mediated down-regulation of E-cadherin in breast cancer cells,' Cancer Res, vol. 63, pp. 5203-8, Sep 1 2003. [61] H. Liu, et al., 'Estrogen receptor inhibits interleukin-6 gene expression by disruption of nuclear factor kappaB transactivation,' Cytokine, vol. 31, pp. 251-7, Aug 21 2005. [62] R. Galien and T. Garcia, 'Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site,' Nucleic Acids Res, vol. 25, pp. 2424-9, Jun 15 1997. [63] B. Stein and M. X. Yang, 'Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta,' Mol Cell Biol, vol. 15, pp. 4971-9, Sep 1995. [64] G. A. Blobel, et al., 'Ligand-dependent repression of the erythroid transcription factor GATA-1 by the estrogen receptor,' Mol Cell Biol, vol. 15, pp. 3147-53, Jun 1995. [65] Q. Lu, et al., 'Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors,' J Med Chem, vol. 48, pp. 5530-5, Aug 25 2005. [66] C. T. Bock, et al., 'The enhancer I core region contributes to the replication level of hepatitis B virus in vivo and in vitro,' J Virol, vol. 74, pp. 2193-202, Mar 2000. [67] A. D. Garcia, et al., 'Functional interaction of nuclear factors EF-C, HNF-4, and RXR alpha with hepatitis B virus enhancer I,' J Virol, vol. 67, pp. 3940-50, Jul 1993. [68] G. Doitsh and Y. Shaul, 'Enhancer I predominance in hepatitis B virus gene expression,' Mol Cell Biol, vol. 24, pp. 1799-808, Feb 2004. [69] G. Waris and A. Siddiqui, 'Interaction between STAT-3 and HNF-3 leads to the activation of liver-specific hepatitis B virus enhancer 1 function,' J Virol, vol. 76, pp. 2721-9, Mar 2002. [70] F. J. Gonzalez, 'Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription,' Drug Metab Pharmacokinet, vol. 23, pp. 2-7, 2008. [71] T. Tanaka, et al., 'Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4alpha in the pathogenesis of human cancer,' J Pathol, vol. 208, pp. 662-72, Apr 2006. [72] J. Huang, et al., 'Expression of HNF4alpha variants in pancreatic islets and Ins-1 beta cells,' Diabetes Metab Res Rev, vol. 24, pp. 533-43, Oct 2008. [73] F. M. Sladek, et al., 'Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alpha1,' Mol Cell Biol, vol. 19, pp. 6509-22, Oct 1999. [74] M. Hadzopoulou-Cladaras, et al., 'Functional domains of the nuclear receptor hepatocyte nuclear factor 4,' J Biol Chem, vol. 272, pp. 539-50, Jan 3 1997. [75] M. H. Wu, et al., 'Androgen receptor promotes hepatitis B virus-induced hepatocarcinogenesis through modulation of hepatitis B virus RNA transcription,' Sci Transl Med, vol. 2, p. 32ra35, May 19 2010. [76] D. I. Tai, et al., 'Long-term outcome of hepatitis B e antigen-negative hepatitis B surface antigen carriers in relation to changes of alanine aminotransferase levels over time,' Hepatology, vol. 49, pp. 1859-67, Jun 2009. [77] C. M. Chu and Y. F. Liaw, 'Incidence and risk factors of progression to cirrhosis in inactive carriers of hepatitis B virus,' Am J Gastroenterol, vol. 104, pp. 1693-9, Jul 2009. [78] F. H. Su, et al., 'Seroprevalence of Hepatitis-B infection amongst Taiwanese university students 18 years following the commencement of a national Hepatitis-B vaccination program,' J Med Virol, vol. 79, pp. 138-43, Feb 2007. [79] C. M. Chu and Y. F. Liaw, 'Predictive factors for reactivation of hepatitis B following hepatitis B e antigen seroconversion in chronic hepatitis B,' Gastroenterology, vol. 133, pp. 1458-65, Nov 2007. [80] C. M. Chu, et al., 'Sex difference in chronic hepatitis B virus infection: an appraisal based on the status of hepatitis B e antigen and antibody,' Hepatology, vol. 3, pp. 947-50, Nov-Dec 1983. [81] J. F. Wu, et al., 'Effect of puberty onset on spontaneous hepatitis B virus e antigen seroconversion in men,' Gastroenterology, vol. 138, pp. 942-8 e1, Mar 2010. [82] S. Karmakar, et al., 'Estradiol downregulation of the tumor suppressor gene BTG2 requires estrogen receptor-alpha and the REA corepressor,' Int J Cancer, vol. 124, pp. 1841-51, Apr 15 2009. [83] D. R. Jones, et al., 'Estrogen receptor-mediated repression of human hepatic lipase gene transcription,' J Lipid Res, vol. 43, pp. 383-91, Mar 2002. [84] D. T. Odom, et al., 'Control of pancreas and liver gene expression by HNF transcription factors,' Science, vol. 303, pp. 1378-81, Feb 27 2004. [85] S. Kasper, et al., 'Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene,' J Biol Chem, vol. 269, pp. 31763-9, Dec 16 1994. [86] H. Nakshatri and P. Bhat-Nakshatri, 'Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements,' Nucleic Acids Res, vol. 26, pp. 2491-9, May 15 1998. [87] C. R. Ondracek, et al., 'Peroxisome proliferator-activated receptor gamma Coactivator 1alpha and small heterodimer partner differentially regulate nuclear receptor-dependent hepatitis B virus biosynthesis,' J Virol, vol. 83, pp. 12535-44, Dec 2009. [88] C. R. Ondracek, et al., 'Distinct regulation of hepatitis B virus biosynthesis by peroxisome proliferator-activated receptor gamma coactivator 1alpha and small heterodimer partner in human hepatoma cell lines,' J Virol, vol. 83, pp. 12545-51, Dec 2009. [89] C. E. Oropeza, et al., 'Differential inhibition of nuclear hormone receptor-dependent hepatitis B virus replication by the small heterodimer partner,' J Virol, vol. 82, pp. 3814-21, Apr 2008. [90] Y. K. Lee, et al., 'The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression,' Mol Cell Biol, vol. 20, pp. 187-95, Jan 2000. [91] W. J. Yang, et al., 'Hepatitis B virus X protein enhances the transcriptional activity of the androgen receptor through c-Src and glycogen synthase kinase-3beta kinase pathways,' Hepatology, vol. 49, pp. 1515-24, May 2009. [92] J. Han, et al., 'Hepatitis B virus X protein and the estrogen receptor variant lacking exon 5 inhibit estrogen receptor signaling in hepatoma cells,' Nucleic Acids Res, vol. 34, pp. 3095-106, 2006. [93] W. L. Ma, et al., 'Androgen receptor is a new potential therapeutic target for the treatment of hepatocellular carcinoma,' Gastroenterology, vol. 135, pp. 947-55, 955 e1-5, Sep 2008. [94] S. H. Wang, et al., 'Identification of androgen response elements in the enhancer I of hepatitis B virus: a mechanism for sex disparity in chronic hepatitis B,' Hepatology, vol. 50, pp. 1392-402, Nov 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23576 | - |
| dc.description.abstract | 在B型肝炎相關聯之肝癌發生率上,有著男性顯著高於女性的盛行率。男性帶原者通常具有較高的血清病毒量,而較高的血清病毒量已被證實為導致肝癌的風險因子之一。在此論文研究中,將探討性激素訊息傳遞路徑是否藉由調控病毒轉錄及複製過程為導致男性體內較高血清病毒量之一可能機制。我們利用B肝病毒基因體轉殖鼠的動物模式來評估血清中S表面抗原與病毒量是否有著性別歧異,並且針對性激素參與其中的重要性以切除性腺的方式來加以探討。公鼠血清中的S表面抗原與病毒量皆高於母鼠,這兩項病毒指標在公鼠去勢睪丸之後會顯著降低;相反地,血清病毒量在母鼠切除卵巢之後會明顯上升,而公鼠在接受雌激素外來補充之後則會有所下降。這結果顯示出雄激素、雌激素在B肝病毒生活史中,扮演著正、負向調控的角色。
對於雄激素部份的研究,我們發現受到雄激素活化的雄激素受器,可透過其轉活化功能結構域來增強病毒整體的轉錄核醣核酸量。在B肝病毒的一號增強子序列中,我們發現到特定片段專門負責媒介雄激素受器對於轉錄活化的效果。染色質免疫沉澱法與體外核酸蛋白結合測定的實驗結果也進一步地證實,受到雄激素活化的雄激素受器會直接黏合至此特定片段上。兩套雄激素反應元在此片段中被我們確切定位出來,若是以點突變的方式破壞它們,將會嚴重影響到雄激素受器增進B肝病毒轉錄生成量的效果。 對於雌激素部份的研究,我們發現即使在沒有雌激素的情況下,雌激素受器本身就能夠造成病毒整體核醣核酸量的降低。藉由螢光酶報告檢測的協助,B肝病毒基因體中負責媒介轉錄抑制效果的區域亦位於一號增強子序列中。經由實驗證實,雌激素受器並非主動地經由直接黏合至目標序列,或透過組織蛋白去乙醯化酶的活性來發揮效果;相反地,它是藉由困鎖肝细胞核因子4α此一正向轉錄調控因子的被動機制,來阻止其結合至一號增強子序列上而達到抑制病毒轉錄核醣核酸的效果。因此超量外表現肝细胞核因子4α能夠克服雌激素受器對於B肝病毒的轉錄抑制。而且若是一號增強子序列上的肝细胞核因子4α結合位置被破壞,雌激素受器對於病毒轉錄的影響將會完全消失。協同免疫沉澱法的分析也指出,雌激素受器可透過其蛋白結構上的鍊橋功能域來與肝细胞核因子4α結合。目前的實驗結果顯示,雌激素受器抑制B肝病毒轉錄的可能機制是毋需雌激素的參與;然而接受雌激素活化的雌激素受器,是否也是經由困鎖肝细胞核因子4α的機制來抑制B肝病毒的轉錄生合成,需要更進一步地研究驗證。 總結而論,這篇研究論文已證實:雄激素、雌激素這兩種性激素的訊息傳遞路徑,分別以正、負向的角度來調控B肝病毒的轉錄核醣核酸量。本研究成果所發現的此一現象,將可能造成血清病毒量上的性別差異,並且對其提出一項可能的分子機制來說明男性B肝帶原者體內較高的血清病毒量,以及後續較高的肝癌發生風險。 | zh_TW |
| dc.description.abstract | Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) occurs more often in men than in women. Male HBV carriers usually have higher viral loads, which was a well-known risk factor for HCC. Whether the sex hormone pathways are involved in regulating HBV life cycle as one possible mechanism for the higher titer in male patients was investigated in this thesis. The HBV transgenic mice were used for evaluating any sex difference of serum viral antigens and titers, as well as the gonadectomy effect on this difference. The serum Hepatitis B surface antigen (HBsAg) levels and viral titers were higher in male than in female HBV-transgenic mice, which could be lessened by castration of the males. In contrast, the HBV titers were elevated by ovariectomy in the females and were decreased by supplementation of estrogen in males. The results suggested the positive role of androgen and negative role of estrogen pathways in regulating the HBV life cycle.
For the androgen part of study, we found that the ligand-stimulated AR could increase the amounts of overall HBV transcripts through its transactivation domain. A genomic region within HBV enhancer I was identified to be responsible for the transcriptional activation of AR. The results from chromatin immunoprecipitation and in vitro binding assays further demonstrated a direct binding of AR to this region, in a ligand-dependent manner. Two androgen response elements (ARE) in this region were identified, and mutations of either site can significantly abolish the AR effects. For the estrogen part of study, we found that ERα could decrease the HBV mRNA levels, even in the absence of ligand. Aided by reporter assay, a region within HBV enhancer I was identified responsible for the repression. The active repression mechanism, either by direct binding of ERα or through the HDAC activity, was not required for ERα to repress the transcription of HBV. In contrast, a passive mechanism by ERα to squelch a positive transcriptional factor, HNF4α, from binding to the enhancer I region was identified. Overexpression of HNF4α could overcome the repressive effect of ERα on HBV transcription. Moreover, the ERα effects on the transcription of HBV could be abolished by disrupting the HNF4α-binding site within HBV enhancer I. Co-immunoprecipitation analysis further indicated that ERα can bind to HNF4α through its hinge region. The current results thus illustrate a possible mechanism for ER to repress the transcription of HBV, in a ligand independent manner. Whether the ligand stimulated ERα can also through chelating the HNF4α for repression of HBV transcription warrants further investigation. In conclusion, this thesis demonstrated that both androgen and estrogen pathways can regulate the transcription of HBV mRNAs, but in an opposite manner. It could contribute to the gender difference of viral titers and provide one molecular mechanism for the higher HBV titer and increased risk of HCC in male HBV carriers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:04:11Z (GMT). No. of bitstreams: 1 ntu-100-F93445114-1.pdf: 5660520 bytes, checksum: 44dab827082adea3383c45319b1c3545 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 封面……I
學位論文口試委員會審定書……II 序言與誌謝……III 中文摘要……IV Abstract …VI Abbreviation List ……1 Introduction ..4 1. The Prevalence and Current Situation of Hepatitis B Virus Worldwide …....4 2. The Molecular Biology of HBV ………………………………………………...5 3. The Possible Mechanisms of HBV-Associated Hepatocarcinogenesis …….....5 4. The Gender Disparity of HBV-Related HCC Development ……………..…...7 5. Sex Hormone Pathways and HBV Life Cycle ……………………………....…8 Hypothesis and Purpose ………………………………………………………11 Materials and Methods ..………………………….…………………………...12 1. Plasmid Constructs and Site-Directed Mutagenesis ……………..…………..12 2. Chemicals and Antibodies ……………………………………………………..15 3. Animal Managements and Gonadectomy ...…………………………………..16 4. Tablet Implantation and Hydrodynamic Injection …………………………..17 5. Quantification of Serum Viral Markers and Estrogen Concentration ……..19 6. Cell culture, Transfection, and Lentivirus Preparation ……………………..20 7. RNA Extraction and Northern Blot Analysis ………………………………...21 8. Cellular Protein Fractionation, Western Blot Analysis and Luciferase Reporter Assay………………………………………………………………...22 9. Co-immunoprecipitation, Chromatin Immunoprecipitation and Plasmid Immunoprecipitation ………………………………………………................24 10. GST Protein Purification and NoShift Assay ……………………………….25 11. Immunohistochemical Analysis ……………………………………………...27 Result ..………………………………………………………………….............….28 1. Investigation of The Effect of Androgen Pathway on HBV Life Cycle….…..28 (1) The Higher HBsAg and HBV Titers in Male HBV Transgenic Mice are Attributed to the Androgen Pathway………………………………………28 (2) Ligand-Stimulated AR Enhances the Transcription of HBV mRNA Transcripts…………………………………………………………………..29 (3) Transcriptional Activity of AR is Required for its Enhancement of HBV Transcription…………………………………………………………………31 (4) HBV Enhancer I Contains a DNA Element Responsive to Transcriptional Regulation by Ligand-Stimulated AR………………………………………32 (5) Ligand-Stimulated AR Directly Binds to the Enhancer I of HBV Genome..............................................................................................................33 (6) Two ARE Motifs Mapped in HBV Enhancer I are Responsible for the AR-Stimulated HBV Transcription………………………………................34 2. Investigation of The Effect of Estrogen Pathway on HBV Life Cycle…...….37 (1) Estrogen Down-Regulated the Serum HBV Titers in HBV Transgenic Mice…………………………………………………………………………....37 (2) The HBV Transcripts can be Decreased by ERα through Down-Regulating the Function of HBV Enhancer I.…………………………………………...40 (3) The Direct Binding of ERα and the HDAC Activities are not Required for ERα-Mediated Repression…………...............................................................44 (4) Overexpression of HNF4α can Overcome the Repressive Effect of ERα on HBV Transcription...........................................................................................46 (5) The HNF4α-Binding Site within HBV Enhancer I is Essential for the Down-Regulation of HBV Transcripts by ERα…………………………….51 (6) The Amounts of HBV Transcripts and the Levels of Serum Viral Antigens can be Down-Regulated by ERα in Ovariectomized Female Mice………..52 (7) The Hinge Region of ERα is Critical for the Down-Regulation of HBV mRNAs…………………………………………………………………….......55 (8) ERα can Interact with HNF4α through its Hinge Region………………….57 (9) The DNA-Binding Capacity of HNF4α to the Core Domain of Enhancer I can be Decreased by Ligand-Stimulated ERα.………...……………………58 (10) The Expressions of HNF1α and PO Genes can be Down-Regulated by ERα through Distinct Molecular Mechanisms…………………………………...61 Discussion ..…………………………………………………………….................63 Conclusion ………………………………………………………………………..75 Figures and Tables……………………………………………………..………..77 Fig. 1. Androgen Pathway is Critical for the Higher Serum HBsAg and HBV Titer in Male HBV Transgenic Mice……………………………………77 Fig. 2. The Relative HBV mRNA Levels in Different Organs of the Male HBV Transgenic Mice…………………………………………………….……78 Fig. 3. The Liver Tissues of Male HBV Transgenic Mice Showed Higher Levels of HBV RNA Transcripts than Females……………………….……….79 Fig. 4. Ligand-Stimulated AR Increases the HBV RNA Transcripts…….…...80 Fig. 5. The Transcriptional Activity of AR through the N-Terminal Transactivation Domain is Required for its Enhancement of HBV Transcription……………………………………………………….81 Fig. 6. HBV Enhancer I, nt 899–1036, Contains DNA Elements Responsive to Transcriptional Regulation by Ligand-Stimulated AR………………..82 Fig. 7. Androgen-Stimulated AR Directly Binds to HBV Enhancer I……...…83 Fig. 8. The Two ARE Sites within HBV Enhancer I-3 Contribute to the HBV Transcription Enhanced by Ligand-Stimulated AR…………….……..84 Fig. 9. ERα was the Dominant Type in Hepatoma Cell Lines and Liver Tissues of HBV-Transgenic Mice………………………………….…………..…85 Fig. 10. Estrogen Down-Regulated the Serum HBV Titers in HBV-Transgenic Mice……………………………………………………………………….86 Fig. 11. Estrogen Increased the Protein Amounts of ERα in Liver Tissues of HBV-Transgenic Mice……………………………………………..…...88 Fig. 12. The HBV Transcripts can be Decreased by ERα through Down-Regulating the Function of HBV Enhancer I……….……...….89 Fig. 13. The Direct Binding of ERα and the HDAC Activities are not Required for ERα-Mediated Repression.…………………………..…...…..……91 Fig. 14. HBV Enhancer I, nt 1004–1252, Contained DNA Elements Responsive to Transcriptional Repression by ERα………………………..………93 Fig. 15. Overexpression of HNF4α can Overcome the Repressive Effect of ERα on HBV Transcription………………………………………….…...…94 Fig. 16. The HNF4α-Binding Site within HBV Enhancer I is Essential for the Down-Regulation of HBV Transcripts by ERα……….……..…….…96 Fig. 17. The Amounts of HBV Transcripts and the Levels of Serum Viral Antigens can be Down-Regulated by ERα in Ovariectomized Female Mice……………………………………………………………..………98 Fig. 18. ERα Expression in the Liver Tissues of Female Mice……………....100 Fig. 19. The Hinge Region of ERα is Critical for the Down-Regulation of HBV mRNAs………………………………………………………...………101 Fig. 20. ERα can Interact with HNF4α through its Hinge Region………..…103 Fig. 21. The DNA-Binding Capacity of HNF4α to the Core Domain of Enhancer I can be Decreased by Ligand-Stimulated ERα………....104 Fig. 22. The Expressions of HNF1α and PO Genes can be Down-Regulated by ERα through Distinct Molecular Mechanisms……………...………105 Fig. 23. A Proposed Model for the Positive Role of AR in HBV Life Cycle and HCC Development…………………………………………..….……106 Fig. 24. A Proposed Model for the Negative Role of ERα in HBV Life Cycle and HCC Development………………………………………….……107 Fig. 25. Schematic Illustration of Transcriptional Factor-Binding Sites within the HBV Enhancer I / HBx Promoter Region…………………….…108 Table 1. Comparison of the HBV ARE-1 and ARE-2 Sequences in Genotypes A~D of HBV Genomes………………………………………………109 Table 2. Comparison of the HNF4α-Binding Site Sequences in Genotypes A~D of HBV Genomes……………………………………………..……….110 Reference ..………………………………………………………………………111 Appendixes …………………………………………………..………………….118 Material List…………………………………………………………...….…….118 Primer Sequence………………………………………………………...……...119 Acknowledgement……...……………………...……………………………….122 學位論文延後公開申請書…………………………………….…………123 與本論文相關之已公開發表文獻………………………………….……124 | |
| dc.language.iso | en | |
| dc.title | 性激素調控B型肝炎病毒mRNA轉錄過程之分子機制研究 | zh_TW |
| dc.title | The Molecular Mechanisms for Sex Hormones in Regulating the Transcription of Hepatitis B Virus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),鄧述諄(Shu-Chun Teng),施修明(Hsiu-Ming Shih),蔡亭芬(Ting-Fen Tsai) | |
| dc.subject.keyword | B型肝炎病毒,肝細胞癌,雄激素,雄激素受器,雌激素,雌激素受器,轉錄調控, | zh_TW |
| dc.subject.keyword | Hepatitis B Virus,Hepatocellular Carcinoma,Androgen,Androgen Receptor,Estrogen,Estrogen Receptor,Transcriptional Regulation, | en |
| dc.relation.page | 124 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-02-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
