Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23568
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王惠鈞(Andrew H.-J.Wang)
dc.contributor.authorChia-I Liuen
dc.contributor.author劉佳宜zh_TW
dc.date.accessioned2021-06-08T05:04:05Z-
dc.date.copyright2011-02-20
dc.date.issued2011
dc.date.submitted2011-02-13
dc.identifier.citationAkamine, S., Nakamori, K., Chechetka, S.A., Banba, M., Umehara, Y., Kouchi, H., Izui, K., and Hata, S. (2003). cDNA cloning, mRNA expression, and mutational analysis of the squalene synthase gene of Lotus japonicus. Biochim Biophys Acta 1626, 97-101.
Bergstrom, J.D., Dufresne, C., Bills, G.F., Nallin-Omstead, M., and Byrne, K. (1995). Discovery, biosynthesis, and mechanism of action of the zaragozic acids: potent inhibitors of squalene synthase. Annu Rev Microbiol 49, 607-639.
Bergstrom, J.D., Kurtz, M.M., Rew, D.J., Amend, A.M., Karkas, J.D., Bostedor, R.G., Bansal, V.S., Dufresne, C., VanMiddlesworth, F.L., Hensens, O.D., et al. (1993). Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci U S A 90, 80-84.
Blagg, B.S., Jarstfer, M.B., Rogers, D.H., and Poulter, C.D. (2002). Recombinant squalene synthase. A mechanism for the rearrangement of presqualene diphosphate to squalene. J Am Chem Soc 124, 8846-8853.
C, K.M.Chen., Hudock, M.P., Zhang, Y., Guo, R.T., Cao, R., No, J.H., Liang, P.H., Ko, T.P., Chang, T.H., Chang, S.C., et al. (2008). Inhibition of geranylgeranyl diphosphate synthase by bisphosphonates: a crystallographic and computational investigation. J Med Chem 51, 5594-5607.
Cammerer, S.B., Jimenez, C., Jones, S., Gros, L., Lorente, S.O., Rodrigues, C., Rodrigues, J.C., Caldera, A., Ruiz Perez, L.M., da Souza, W., et al. (2007). Quinuclidine derivatives as potential antiparasitics. Antimicrob Agents Chemother 51, 4049-4061.
Cannell, R.J., Dawson, M.J., Hale, R.S., Hall, R.M., Noble, D., Lynn, S., and Taylor, N.L. (1993). The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. IV. Preparation of fluorinated squalestatins by directed biosynthesis. J Antibiot (Tokyo) 46, 1381-1389.
Ciosek, C.P., Jr., Magnin, D.R., Harrity, T.W., Logan, J.V., Dickson, J.K., Jr., Gordon, E.M., Hamilton, K.A., Jolibois, K.G., Kunselman, L.K., Lawrence, R.M., et al. (1993). Lipophilic 1,1-bisphosphonates are potent squalene synthase inhibitors and orally active cholesterol lowering agents in vivo. J Biol Chem 268, 24832-24837.
Dawson, M.J., Farthing, J.E., Marshall, P.S., Middleton, R.F., O'Neill, M.J., Shuttleworth, A., Stylli, C., Tait, R.M., Taylor, P.M., Wildman, H.G., et al. (1992). The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot (Tokyo) 45, 639-647.
De Souza, W., and Rodrigues, J.C. (2009). Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs. Interdiscip Perspect Infect Dis 2009, 642502.
Elsayed, R.K., and Evans, J.D. (2008). Emerging lipid-lowering drugs: squalene synthase inhibitors. Expert Opin Emerg Drugs 13, 309-322.
Epstein, W.W., and Rilling, H.C. (1970). Studies on the mechanism of squalene biosynthesis. The structure of presqualene pyrophosphate. J Biol Chem 245, 4597-4605.
Fu, Z., Voynova, N.E., Herdendorf, T.J., Miziorko, H.M., and Kim, J.J. (2008). Biochemical and structural basis for feedback inhibition of mevalonate kinase and isoprenoid metabolism. Biochemistry 47, 3715-3724.
Gu, P., Ishii, Y., Spencer, T.A., and Shechter, I. (1998). Function-structure studies and identification of three enzyme domains involved in the catalytic activity in rat hepatic squalene synthase. J Biol Chem 273, 12515-12525.
Haebich, D., and von Nussbaum, F. (2008). 'Superbugs bunny' outsmarts our immune defense. ChemMedChem 3, 1173-1177.
Harwood, H.J., Jr., Barbacci-Tobin, E.G., Petras, S.F., Lindsey, S., and Pellarin, L.D. (1997). 3-(4-chlorophenyl)-2-(4-diethylaminoethoxyphenyl)-A-pentenonitrile monohydrogen citrate and related analogs. Reversible, competitive, first half-reaction squalene synthetase inhibitors. Biochem Pharmacol 53, 839-864.
Hornby, J.M., Kebaara, B.W., and Nickerson, K.W. (2003). Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother 47, 2366-2369.
Huang, C., Hightower, K.E., and Fierke, C.A. (2000). Mechanistic studies of rat protein farnesyltransferase indicate an associative transition state. Biochemistry 39, 2593-2602.
Iwata-Reuyl, D., Math, S.K., Desai, S.B., and Poulter, C.D. (2003). Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase. Biochemistry 42, 3359-3365.
Jarstfer, M.B., Zhang, D.L., and Poulter, C.D. (2002). Recombinant squalene synthase. Synthesis of non-head-to-tail isoprenoids in the absence of NADPH. J Am Chem Soc 124, 8834-8845.
Jones, C.A., Sidebottom, P.J., Cannell, R.J., Noble, D., and Rudd, B.A. (1992). The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. III. Biosynthesis. J Antibiot (Tokyo) 45, 1492-1498.
Kahlon, A.K., Roy, S., and Sharma, A (2010). Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus. J Biomol Struct Dyn 28, 201-210.
Kalinowski, S.S., and Mookhtiar, K.A. (1999). Mechanism of inhibition of yeast squalene synthase by substrate analog inhibitors. Arch Biochem Biophys 368, 338-346.
Kuo, C.J., Guo, R.T., Lu, I.L., Liu, H.G., Wu, S.Y., Ko, T.P., Wang, A.H., and Liang, P.H. (2008). Structure-based inhibitors exhibit differential activities against Helicobacter pylori and Escherichia coli undecaprenyl pyrophosphate synthases. J Biomed Biotechnol 2008, 841312.
Lee, S., and Poulter, C.D. (2008). Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J Bacteriol 190, 3808-3816.
Lesburg, C.A., Zhai, G., Cane, D.E., and Christianson, D.W. (1997). Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820-1824.
Liang, P.H. (2009). Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48, 6562-6570.
Lin, F.Y., Liu, C.I., Liu, Y.L., Zhang, Y., Wang, K., Jeng, W.Y., Ko, T.P., Cao, R., Wang, A.H., and Oldfield, E. Mechanism of action and inhibition of dehydrosqualene synthase. Proc Natl Acad Sci U S A.
Lin, F.Y., Liu, C.I., Liu, Y.L., Zhang, Y., Wang, K., Jeng, W.Y., Ko, T.P., Cao, R., Wang, A.H., and Oldfield, E. (2010). Mechanism of action and inhibition of dehydrosqualene synthase. Proc Natl Acad Sci U S A. Nov 23 Epub.
Lindsey, S., and Harwood, H.J., Jr. (1995). Inhibition of mammalian squalene synthetase activity by zaragozic acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation. J Biol Chem 270, 9083-9096.
Liu, C.I., Liu, G.Y., Song, Y., Yin, F., Hensler, M.E., Jeng, W.Y., Nizet, V., Wang, A.H., and Oldfield, E. (2008). A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319, 1391-1394.
Lopez, D., and Kolter, R. (2010). Functional microdomains in bacterial membranes. Genes Dev 24, 1893-1902.
Magnin, D.R., Biller, S.A., Chen, Y., Dickson, J.K., Jr., Fryszman, O.M., Lawrence, R.M., Logan, J.V., Sieber-McMaster, E.S., Sulsky, R.B., Traeger, S.C., et al. (1996). alpha-Phosphonosulfonic acids: potent and selective inhibitors of squalene synthase. J Med Chem 39, 657-660.
Menys, V.C., and Durrington, P.N. (2003). Squalene synthase inhibitors. Br J Pharmacol 139, 881-882.
Orenes Lorente, S., Gomez, R., Jimenez, C., Cammerer, S., Yardley, V., de Luca-Fradley, K., Croft, S.L., Ruiz Perez, L.M., Urbina, J., Gonzalez Pacanowska, D., et al. (2005). Biphenylquinuclidines as inhibitors of squalene synthase and growth of parasitic protozoa. Bioorg Med Chem 13, 3519-3529.
Pan, J.J., Bugni, T.S., and Poulter, C.D. (2009). Recombinant squalene synthase. synthesis of cyclopentyl non-head-to-tail triterpenes. J Org Chem 74, 7562-7565.
Pandit, J., Danley, D.E., Schulte, G.K., Mazzalupo, S., Pauly, T.A., Hayward, C.M., Hamanaka, E.S., Thompson, J.F., and Harwood, H.J., Jr. (2000). Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J Biol Chem 275, 30610-30617.
Ponpipom, M.M., Girotra, N.N., Bugianesi, R.L., Roberts, C.D., Berger, G.D., Burk, R.M., Marquis, R.W., Parsons, W.H., Bartizal, K.F., Bergstom, J.D., et al. (1994). Structure-activity relationships of C1 and C6 side chains of zaragozic acid A derivatives. J Med Chem 37, 4031-4051.
Prashad, M., Kathawala, F.G., and Scallen, T. (1993). N-(arylalkyl)farnesylamines: new potent squalene synthetase inhibitors. J Med Chem 36, 1501-1504.
Procopiou, P.A., Cox, B., Kirk, B.E., Lester, M.G., McCarthy, A.D., Sareen, M., Sharratt, P.J., Snowden, M.A., Spooner, S.J., Watson, N.S., et al. (1996). The squalestatins: inhibitors of squalene synthase. Enzyme inhibitory activities and in vivo evaluation of C3-modified analogues. J Med Chem 39, 1413-1422.
Radisky, E.S., and Poulter, C.D. (2000). Squalene synthase: steady-state, pre-steady-state, and isotope-trapping studies. Biochemistry 39, 1748-1760.
Rodrigues, J.C., Urbina, J.A., and de Souza, W. (2005). Antiproliferative and ultrastructural effects of BPQ-OH, a specific inhibitor of squalene synthase, on Leishmania amazonensis. Exp Parasitol 111, 230-238.
Rothwell, C., Lebreton, A., Young Ng, C., Lim, J.Y., Liu, W., Vasudevan, S., Labow, M., Gu, F., and Gaither, L.A. (2009). Cholesterol biosynthesis modulation regulates dengue viral replication. Virology 389, 8-19.
Sasiak, K., and Rilling, H.C. (1988). Purification to homogeneity and some properties of squalene synthetase. Arch Biochem Biophys 260, 622-627.
Sealey-Cardona, M., Cammerer, S., Jones, S., Ruiz-Perez, L.M., Brun, R., Gilbert, I.H., Urbina, J.A., and Gonzalez-Pacanowska, D. (2007). Kinetic characterization of squalene synthase from Trypanosoma cruzi: selective inhibition by quinuclidine derivatives. Antimicrob Agents Chemother 51, 2123-2129.
Sharma, A., Slugg, P.H., Hammett, J.L., and Jusko, W.J. (1998). Clinical pharmacokinetics and pharmacodynamics of a new squalene synthase inhibitor, BMS-188494, in healthy volunteers. J Clin Pharmacol 38, 1116-1121.
Shechter, I., Klinger, E., Rucker, M.L., Engstrom, R.G., Spirito, J.A., Islam, M.A., Boettcher, B.R., and Weinstein, D.B. (1992). Solubilization, purification, and characterization of a truncated form of rat hepatic squalene synthetase. J Biol Chem 267, 8628-8635.
Sidebottom, P.J., Highcock, R.M., Lane, S.J., Procopiou, P.A., and Watson, N.S. (1992). The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. II. Structure elucidation. J Antibiot (Tokyo) 45, 648-658.
Soltis, D.A., McMahon, G., Caplan, S.L., Dudas, D.A., Chamberlin, H.A., Vattay, A., Dottavio, D., Rucker, M.L., Engstrom, R.G., Cornell-Kennon, S.A., et al. (1995). Expression, purification, and characterization of the human squalene synthase: use of yeast and baculoviral systems. Arch Biochem Biophys 316, 713-723.
Song, Y., Lin, F.Y., Yin, F., Hensler, M., Rodrigues Poveda, C.A., Mukkamala, D., Cao, R., Wang, H., Morita, C.T., Gonzalez Pacanowska, D., et al. (2009a). Phosphonosulfonates are potent, selective inhibitors of dehydrosqualene synthase and staphyloxanthin biosynthesis in Staphylococcus aureus. J Med Chem 52, 976-988.
Song, Y., Liu, C.I., Lin, F.Y., No, J.H., Hensler, M., Liu, Y.L., Jeng, W.Y., Low, J., Liu, G.Y., Nizet, V., et al. (2009b). Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J Med Chem 52, 3869-3880.
Spencer, T.A., Onofrey, T.J., Cann, R.O., Russel, J.S., Lee, L.E., Blanchard, D.E., Castro, A., Gu, P., Jiang, G., and Shechter, I. (1999). Zwitterionic Sulfobetaine Inhibitors of Squalene Synthase. J Org Chem 64, 807-818.
Starks, C.M., Back, K., Chappell, J., and Noel, J.P. (1997). Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815-1820.
Summers, C., Karst, F., and Charles, A.D. (1993). Cloning, expression and characterisation of the cDNA encoding human hepatic squalene synthase, and its relationship to phytoene synthase. Gene 136, 185-192.
Takahashi, S., and Koyama, T. (2006). Structure and function of cis-prenyl chain elongating enzymes. Chem Rec 6, 194-205.
Tansey, T.R., and Shechter, I. (2000). Structure and regulation of mammalian squalene synthase. Biochim Biophys Acta 1529, 49-62.
Thompson, J.F., Danley, D.E., Mazzalupo, S., Milos, P.M., Lira, M.E., and Harwood, H.J., Jr. (1998). Truncation of human squalene synthase yields active, crystallizable protein. Arch Biochem Biophys 350, 283-290.
Thulasiram, H.V., Erickson, H.K., and Poulter, C.D. (2007). Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. Science 316, 73-76.
Urbina, J.A., Concepcion, J.L., Caldera, A., Payares, G., Sanoja, C., Otomo, T., and Hiyoshi, H. (2004). In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi. Antimicrob Agents Chemother 48, 2379-2387.
Wang, K., and Ohnuma, S. (1999). Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci 24, 445-451.
Wang, K.C., and Ohnuma, S. (2000). Isoprenyl diphosphate synthases. Biochim Biophys Acta 1529, 33-48.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23568-
dc.description.abstract鯊烯合成酶 (Squalene synthase , SQS)隸屬於異戊二烯轉移酵素(trans-Prenyl transferase) 在低等酵母菌與高等人類間極具保留性,利用其C碳末端依附於內質網膜上;而人類鯊烯合成酶更為催化膽固醇合成的首要關鍵步驟,可以此作為治療高血酯症的藥物標的物。該酵素縮合兩分子碳15焦磷酸酯(Farnesyl pyrophosphate, FPP)成一分子碳30碳氫化合物,也就是鯊烯 (Squalene)作為終產物,其中包含兩獨特步驟。首先,給予者焦磷酸酯(Donor FPP)要將雙磷酸基解離成碳正離子(carbocation),插入於接受者焦磷酸酯(Acceptor FPP) 碳2-碳3雙鍵間,以形成碳1’-2-3 環化中間產物為前鯊烯雙磷酸 (Presqualene pyrophosphate, PSPP)。接著,前鯊烯雙磷酸之雙磷酸基會解離成環丙基代甲基陽離子(Cyclopropylcarbinyl cation),並在依賴型菸草醯胺腺嘌呤二核苷酸磷酸鹽(NADPH-dependent)的結合下進行位向域選擇性(regioselective)與立體選擇性(stereoselective)之還原反應來得到鯊烯。在本研究中,我們取得雙端截短之人類鯊烯合成酶 (31-370) 蛋白質結構,以及其與受質類似物、環化中間物類似物、抑制劑之複合體蛋白質結構。得知該酵素全由α-螺旋所構成,且具兩彈性區域來調節受質、中間產物、輔因子之結合,而這些結構可用以定義人類鯊烯合成酶之受質與環化中間產物結合區。同時,我們觀察到被認為用來結合輔因子之第四區高度保留區,也形成另一空間;有趣的是,來自真菌代謝物之薩拉哥酸(Zaragozic Acid-A, ZA-A)為最重要鯊烯合成酶抑制劑之一,其碳-6醯基亦結合於此。基於人類鯊烯合成酶與金黃色葡萄球菌之前鯊烯合成酶(CrtM)具有結構相似性,故可將鯊烯合成酶抑制劑應用於CrtM以當作治療感染之藥物前驅物;儘管CrtM蛋白質序列不具第四區,但薩拉哥酸仍有效抑制CrtM活性。從CrtM電腦模擬、突變株測試、與CrtM突變株/薩拉哥酸複合體結構,提供可針對致病性金黃色葡萄球菌而不影響體內膽固醇之合成,來設計新型選擇性抑制劑的機會。zh_TW
dc.description.abstractSqualene synthase (SQS) belonging to the trans-Prenyltransferase family is highly conserved in yeast and human, and it is an ER-associated enzyme by the C-terminal end. Human SQS catalyzes the first committed step in cholesterol biosynthesis and serves as an attractive target for hypercholesterolemia treatment. It condenses two molecules of C15 farnesyl pyrophosphate (FPP) to form a C30 hydrocarbon product, squalene. The hydrodrophobic metabolite formation reaction contains two unusual steps. The pyrophosphate group released first from the donor FPP, and then the carbocation inserted into the C2-C3 double bond of the acceptor FPP to generate the C1´-2,3 cyclopropylcarbinyl intermediate, presqualene pyrophosphate (PSPP). In the second step, as the other diphosphate group releases, the cyclopropylcarbinyl cation undergoes the rearrangement with NADPH-dependent regioselective and stereoselective reduction to gain squalene. In this study, we obtained the structures of the doubly truncated enzyme, human SQS (31-370), alone and complexed separately with substrate and intermediate analogues, and a potent inhibitor. Human SQS (31-370) folds into an all α-helical structure with two flexible regions for regulating substrate, intermediate, and cofactor binding. These structures defined the FPP, and PSPP binding sites in human SQS. It was further observed that the alternative cavity consists of conserved region IV, which was proposed as the cofactor binding site. Interestingly, the C-6 acyl group of zaragozic acid-A (ZA-A), one of the most potent SQS inhibitors identified from the fungal metabolite, occupies this region. Based on the structural similarities between human SQS and S. aureus dehydrosqualene synthase (CrtM), SQS inhibitors provide another important application against S. aureus CrtM as anti-infective prototype compounds. Although the CrtM protein sequence bears no homology to conserved region IV, ZA-A shows a low micromolar activity against CrtM. The inhibitor docking mode, mutagenesis assays, together with CrtM mutant/ZA-A structure, presents an opportunity to address the design of new selective inhibitors targeting pathogenic S. aureus without interfering de novo sterol biosynthesis.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:04:05Z (GMT). No. of bitstreams: 1
ntu-100-D94b46004-1.pdf: 18889480 bytes, checksum: e464409a0460dcf1a73053e6c6a43077 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要(I)
Abstract (III)
Abbreviations (V)
Chapter 1 Introduction
1.1 Prenyltransferases (2)
1.1.1 “head-to-tail” trans-Prenyltransferases(7)
1.1.2 “head-to-head” trans-Prenyltransferases(8)
1.2 Human squalene synthase (SQS) (9)
1.2.1 The first half-reaction (16) 1.2.2 The second half-reaction (22)
1.2.3 The effect of magnesium on SQS activity (31)
1.3 Human SQS as a potential target for cholesterol-lowing drugs (31)
1.4 Zaragozic acids (ZAs) display low nM activity against SQS (34)
1.5 Study purpose (36)
Chapter 2 Materials and Methods
2.1 Chemical (39)
2.2 Cloning of human SQS cDNA (31-370) and the construction of expression vector (39)
2.3 Protein expression and purification (39)
2.4 Crystal screening for human SQS (41)
2.5 Mutagenesis for human SQS (41)
2.6 ITC (Isothermal Titration Calorimetry) assay (41)
2.7 Data collection, structure determination and refinement
2.7.1 Data collection (42)
2.7.2 Structure determination and refinement (42)
2.8 Activity assay (43)
Chapter 3 Results
3.1 Cloning and expression of human SQS (31-370)
3.1.1 Cloning of human SQS cDNA (45)
3.1.2 Expression using pET28a vector (45)
3.2 Screening for human SQS (31-370) crystals (46)
3.3 Crystal structure of human SQS (31-370) and of its complexes with substrate and intermediate analogues(46)
3.3.1 Human SQS presents a Mg2+-dependent enzyme(47)
3.3.2 Overall structure of human SQS (31-370)(47)
3.3.3 Structure of human SQS active site (48)
3.3.4 Structures of the human SQS (31-370)/substrate analogue (FsPP) complex with and without Mg2+ (51)
3.3.5 Structure of the human SQS (WT)/intermediate analogue (s-PSPP) complex(55)
3.3.6 Structure of the human SQS F288A/intermediate analogue (s-PSPP) complex (57)
3.4 Inhibition assay and the structural study of potent SQS inhibitor, Zaragozic acid A (ZA-A)
3.4.1 Binding affinity of ZA-A on human SQS (31-370) (58)
3.4.2 Structure of human SQS (31-370)/ZA-A complex (59)
3.5 ZA-A as a potent inhibitor against S. aureus CrtM
3.5.1 ZA-A shows low micromole activity against S. aureus CrtM (62)
3.5.2 Structural docking of ZA-A on S. aureus CrtM (63)
3.5.3 Binding affinity of ZA-A on S. aureus CrtM (64)
3.5.4 Structure of CrtM Y248A/ZA-A complex (65)
Chapter 4 Discussion
4.1 Comparison of the active site structures between human SQS with S. aureus dehydrosqualen synthase (CrtM)(68)
4.2 The proposed catalytic mechanism of human SQS (69)
4.3 Further applications of drug designs on cholesterol-lowering agents and anti-infectives (74)
Tables (76)
Figures(80)
References(108)
Publications(115)
dc.language.isoen
dc.title人類狡鯊烯合成酶結構與zaragozic acid A複合體:催化機制與藥物設計之方向zh_TW
dc.titleStructures of human squalene synthase and its complex with zaragozic acid A: Catalytic mechanism and implication in drug designen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee林俊宏(Chun-Hung Lin),蕭傳鐙(Chwan-Deng Hsiao),詹迺立(Nei-Li, Chan),馬徹(Che Ma)
dc.subject.keyword鯊烯合成&#37238,薩拉哥酸,zh_TW
dc.subject.keywordSqualene synthase,Zaragozic Acid-A,en
dc.relation.page115
dc.rights.note未授權
dc.date.accepted2011-02-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
18.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved