請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23493完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生(Guey-Sheng Liou) | |
| dc.contributor.author | Pei-Hsuang Wang | en |
| dc.contributor.author | 王珮璇 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:02:26Z | - |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | chapter 1
(1) Wang, H. H. Chinese J. Mater. Sci. 1999, 31, 57. (2) Hill, R.; Walker, E. E. J. Polym. Sci. 1948, 3, 609. (3) Morgan, P. W. Chemtech, 1979, 9, 316. (4) Cassidy, P. E. Thermally Stable Polymers, New York: Marcel Dekker 1980. (5) Hergenrother, P. M. Die Angew. Markromol. Chem. 1986, 145, 323.5. (6) Yang, H. H. Aromatic High-Strength Fibers, New York: John Wiley & Sons 1989. (7) H. H. Yang, Kevlar Aramid Fiber, New York: John Wiley & Sons 1993. (8) Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M. Polyimides, New York: Blackie 1990. (9) Abadie, M. J. M.; Mittal, B. Polyimides and Other High-Temperature Polymers, Amsterdam: Elsevier 1991. (10) Ghosh, M. K.; Mittal, K. L. Polyimides: Fundamentals and Applications, New York: Marcel Dekker 1996. (11) Bogert, T. M.; Renshaw, R. R. J. Am. Chem. Soc. 1908, 30, 1140. (12) Endrey, A. L. U.S. Pat. 3179613, 1965. (13) Edwards, W. M. Brit. Pat. 651, 1959. (14) Co, E. I. d. P. d. N. French. Pat. 1491, 1960. (15) Lauver, R. W. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 2529. (16) Grundschober, M. Brit. Pat. 1190718 1978. (17) Fujimoto, M.; Kumamoya, S. J. of the Adhesion Soc. of Japan 1989, 25, 101. (18) Edwards, W. M. U. S. Pat. 3179614, 1965. (19) Sroog, C. E.; Endrey, A. L.; Abramo, S. V.; Berr, C. E.; Edwards, W. M.; Olivier, K. L. J. Polym. Sci. Part A: Polym. Chem. 1965, 3, 1373. (20) Sroog, C. E. J. Polym. Sci. Macromol. Rev. 1976, 11, 161. (21) Cheng, S. Z. D.; Arnold, F. E.; Zhang, J. A.; Hsu, S. L. C.; Harris, F. W. Macromolecules 1991, 24, 5856. (22) Hsiao, S. H.; Yang, C. P.; Fan. J. C. J. Polym. Res. 1994, 1, 345. (23) Tamai, S.;Yamaguchi, A. Ohta, M. Polymer 1996, 37, 3683. (24) Hsiao, S. H.; Huang, P. C. J. Polym. Res. 1997, 4, 189. (25) Imai, Y. High Perform. Polym. 1995, 7, 337. (26) Hsiao, S. H.; Li, C. T. Macromolecules 1998, 31, 7213. (27) Liaw, D. J.; Liaw, B. Y.; Lai, S. H. Macromol. Chem. Phys. 2001, 202, 807. (28) Rabilloud, G. High-performance polymers 2: polyquinoxalines and polyimides, Paris: Editions Technip 1999. (29) Li, F.; Ge, J. J.; Honigfort, P. S.; Fang, S.; Chen, J. C.; Harris, F. W. Polymer 1999, 40, 4987. (30) Eastmond, G. C.; Paprotny, J. Macromolecules 1995, 28, 2140. (31) Hsiao, S. H.; Yang, C. P.; Chu, K. Y. Macromolecules 1997, 30, 165. (32) Hsiao, S. H.; Yang, C. P.; Chen, S. H. J. Polym. Sci. Part A: Polym.Chem. 2000, 38, 1551. (33) Chung, I. S.; Kim, S. Y. Macromolecules 2000, 33, 3190. (34) Zheng, H. B.;Wang, Z. Y. Macromolecules 2000, 33, 4310. (35) Farr, I. V.; Kratzner, D.; Glass, T. E.; Dunson, D.; Ji, Q.; Mcgrath, J. E. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 2840. (36) Cheng, L.; Jian, X. G. J. Appl. Polym. Sci. 2004, 92, 1516. (37) Hsiao, S. H.; Lin, K. H. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 31. (38) Liou, G. S; Hsiao, S. H.; Fang, Y. K. Eur. Polym. J. 2006, 42, 1533. (39) Chang, C. W.; Yen, H. J.; Huang, K. Y.; Huang, E. H.; Yeh, J. M.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7937. (40) Li, Q. X.; Fang, X. Z.; Wang, Z.; Gao, L.-X.; Ding, M. X. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 3249. (41) Cheng, S. H.; Hsiao, S. H.; Su, T. H.; Liou, G. S. Macromolecules 2005, 38, 307. (42) Omote, T.; Koseki, K.; Yamaoka, T. Macromolecules 1990, 23, 4788. (43) Yu, H. S.; Yamashita, T.; Horie, K. Macromolecules 1996, 29, 1144. (44) Ueda, M.; Nakayama, T. Macromolecules 1996, 29, 6427. (45) Akimoto, S.; Jikei, M.; Kakimoto, M. High Perform. Polym. 2000, 12, 177. (46) Chen, T. A.; Jen, A. K-Y.; Cai, Y. Macromolecules 1996, 29, 535. (47) Kim, E. H.; Moon, I. K.; Kim, H. K.; Lee, M. H.; Han, S. G.; Yi, M. H.; Choi, K.Y. Polymer 1999, 40, 6157. (48) Chen, T. A.; Jen, A. K-Y.; Cai, Y. J. Am. Chem. Soc. 1995, 117, 7295. (49) Agag, T.; Takeichi, T. Polymer 1999, 40, 6557. (50) Tullos, G. L.; Mathias, L. J. Polymer 1999, 40, 3463. (51) Tullos, G. L.; Powers, J. M.; Jeskey, S. J.; Mathias, L. J. Macromolecules 1999, 32, 3598. (52) Eastmond, G. C.; Paprotny, J.; Irwin, R. S. Macromolecules 1996, 29, 1382. (53) Hsiao, S. H.; Yang, C. P.; Chen, S. H. Polymer 2000, 41, 6537. (54) Liou, G. S.; Lin, P. H.; Yen, H. J.; Yu, Y. Y.; Tsai, T. W.; Chen, W. C. J. Mater. Chem. 2010, 20, 531. (55) Groh, W.; Zimmerman, A. Macromolecules 1991, 24, 6660. (56) Ando, S.; Masuura, T.; Sasaki, S. J. Polym. Sci. Part A: Polym. Chem. 1991, 30, 2285. (57) Ando, S.; Masuura, T.; Sasaki, S. Polym. J. 1997, 29, 69. (58) Critchley, J. P.; Grattan, P. A.; Whitte, M. A.; Pippett,J. S. J. Polym. Sci. Part A: Polym. Chem. 1972, 10, 1789. (59) Bes, L.; Rousseau, A.; Boutevin, B.; Mercier, R. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2602. (60) Takasaki, T.; Kuwana, Y.; Takahashi, T.; Hayashida,S. J. Polym. Sci. Part A: Polym. Chem. 2000,38, 4832. (61) Liu. J.-G.; Ueda, M. J. Mater. Chem. 2009, 19, 8907. (62) Lorentz, H. A. Ann. Physik. Chemie. 1880, 9, 641. (63) Lorenz, L. Ann. Physik. Chemie. 1880, 11, 70. (64) Okubo, T.; Kohmoto, S.; Yamamoto, M.; Nakahira, T. J. Mater. Sci. 1999, 34, 337. (65) Beecroft, L. L.; Ober, C. K. J. Macromol. Sci. Pure. Appl. Chem: A 1997, 34, 573. (66) Morford, R.; Mercado, R.; Planje, C.; Flaim, T. Proc SPIE 2005, 5724, 34. (67) Flaim, T.; Wang, Y.; Mercado, R. Proc SPIE 2003, 5250, 423. (68) Ochi, M.; Maeda, Y.; Wakao, K. Japan J. Net. Polym. 2006, 27, 30 (in Japanese). (69) Ju, Y. G.; Almuneau, G.; Kim, T. H.; Lee, B. W. Jpn. J. Appl. Phys. 2006, 45, 2546. (70) Krogman, K. C.; Druffel, T.; Sunkara, M. K. Nanotechnology 2005, 16, S338. (71) Suwa, M.; Niwa, H.; Tomikawa, M. J. Photopolym. Sci. Technol. 2006, 19, 275. (72) Regolini, J. L.; Benoit, D. Morin, P. Microelectron Relia 2007;47:739–42. (73) Novak, B. M. Adv. Mater. 1993, 5, 422. (74) Allcock, H. R. Adv. Mater. 1994, 6, 106. (75) Mammeri, F.; Le Bourhis, E.; Rozes , L.; Sanchez, C. J. Mater. Chem. 2005, 15, 3787. (76) Palik, E. D. Handbook of Optical Constants of Solids, Orlando: Academic Press 1985. (77) Caseri, W. Macromol. Rapid Commun. 2000, 21, 705. (78) Shinichi, K. Masashi T. Hiroaki M. Takeshi F. Kana K. Misuaki Y. et al. KokaiTokkyo JP 2005162785; 2005. (79) Guadiana, R. A.; Minns, R. A. J. Macromol. Sci., Chem. 1991, A28(9), 831. (80) Mercado, R.; Wang, Y.; Flaim, T.; DiMenna, W.; Senapati, U. Organic Photonic Materials and Devices VI 2004, 5351, 276. (81) Liu, J. G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. J. Polym. Sci., Part A: Polym. Chem. 2007, 43, 5606. (82) Paquet, C.; Cyr, P. W.; Kumacheva, E.; Manners, I. Chem. Mater. 2004, 16, 5205. (83) Judeinstein, P.; Sanchez, C. J. Mater. Chem. 1996, 6, 511. (84) Pomogailo, A. D. Russ. Chem. Rev. 2000, 69, 53. (85) Matsuda, T.; Funae, Y.; Yoshida, M.; Tsuguo, T. J. Macromol. Sci., Pure Appl. Chem. 1999, A36, 1271. (86) Minns, R. A.; Gaudiana, R. A. J. Macromol. Sci., Pure Appl. Chem.1992, A29, 19. (87) Matsuda, T.; Funae, Y.; Yoshida, M.; Yamamoto, T.; Takaya, T. J.Appl. Polym. Sci. 2000, 76, 45. (88) Lu, C. L.; Cui, Z. C.; Wang, Y. X.; Yang, B.; Shen, J. C. J. Appl. Polym. Sci. 2003, 89, 2426. (89) Nebioglu, A.; Leon, J.; Khudyakov, I. V. A. Ind. Eng. Chem. Res. 2008, 47, 2155. (90) Liu, J. G.; Shibasaki, Y.; Ando, S.; Ueda, M. High Perform. Polym. 2008, 20, 221. (91) Liu, J. G.; Nakamura, Y.; Terraza, C. A.; Suzuki, Y.; Shibasaki, Y.; Ando, S. Macromol. Chem. Phys. 2008, 209, 195. (92) Liu, J. G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Polym. J. 2007, 39, 543. (93) Liu, J. G.; Nakamura, Y.; Suzuki, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Macromolecules 2007, 40, 7902. (94) Terraza, C. A.; Liu, J. G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 1510. (95) Liu, J. G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 5606. (96) Kickelbick, G. Prog. Polym. Sci. 2003, 28, 83. (97) Sanchez, C.; de, G. J.; Soler-Illia, A. A.; Ribot, F.; Lalot, T.; Mayer, C. R.; Cabuil, V. Chem. Mater. 2001, 13, 3061. (98) Beecroft, L. L.; Ober, C. K. Chem. Mater. 1997, 9, 1302. (99) Sanchez, C. ; Ribot, F. ;Lebeau, B. J. Mater. Chem. 1999, 9, 35. (100) Schottner, G. Chem. Mater. 2001, 13, 3422. (101) Pyun, J.; Matyjaszewski, K. Chem. Mater. 2001, 13, 3436. (102) Schmidt, H. Appl. Organomet. Chem. 2001, 15, 331. (103) Innocenzi, P.; Lebeau, B. J. Mater. Chem. 2005, 15, 3821. (104) Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J. P. Adv. Mater. 2003, 15, 1969. (105) Nicole, L.; Boissiere, C.; Grosso, D.; Quach, A.; Sanchez, C. J. Mater. Chem. 2005, 15, 3598. (106) Sanchez, C.; Juli_an, B.; Belleville, P.; Popall, M. J. Mater. Chem. 2005, 15, 3559. (107) Caseri, W. R. Mater. Sci. Technol. 2006, 22, 807. (108) Balazs, A. C.; Emrick, T.; Russell, T. P. Science 2006, 314, 1107. (109) Penard, A. L.; Gacoin, T.; Boilot, J. P. Acc. Chem. Res. 2007, 40, 895. (110) Althues, H.; Henle, J.; Kaskel, S. Chem. Soc. Rev. 2007, 36, 1454. (111) Suzuki, T. T. Macromol. Mater. Eng. 2008, 293, 109. (112) Demir, M. M.; Memesa, M.; Castignolles, P.; Wegner, G. Macromol. Rapid Commun. 2006, 27, 763. (113) Cui, H.; Zayat, M.; Parejo, P. G.; Levy, D. Adv. Mater. 2008, 20, 65. (114) Lu, C.; Yang, B. J. Mater. Chem. 2009, 19, 2884. (115) Kickelbick, G.. Hybrid Materials: Synthesis, Characterization, and Applications, Weinheim: Wiley-VCH 2007. (116) Sanchez, C.; Ribot, F. New. J. Chem. 1994, 18, 1007. (117) Sanchez, C.; Ribot, F.; Lebeau, B. J. Mater. Chem. 1999, 35, 22. (118) Chan, C. K.; Peng, S. L.; Chu, I. M.; Ni, S. C. Polymer 2001, 42, 4189. (119) Rao, Y. Q.; Chen, S. Macromolecules 2008, 41, 4838. (120) Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J. P. Adv. Mater. 2003, 15, 1969. (121) Brinker, C. J.; Scherer, G. W. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing, 1st ed.; Academic Press: San Diego, 1990. (122) Ebelmen, J. J. Ann. 1846, 57, 331. (123) Geffcken, W.; Berger, E. German Patent 1939, 736, 411. (124) Hurd, C. B. Chem. Rev. 1938, 22, 403. (125) Spinu, M.; Brennan, A. B.; Rancourt, K.; Wilkes, G. L.; McGrath, J. E. Mater. Res. Soc. Symp. Proc. 1990, 175, 179. (126) Chen, Y.; Iroh, J. O. Chem. Mater. 1999, 11, 1218. (127) Choi, D. H.; Park, J. H.; Rhee, T. H.; Kim, N. J.; Lee, S. D. Chem. Mater.1998, 10, 705. (128) Brinker, J.; Scherer, G. W. Sol-Gel Science, London: Academic Press 1990. (129) Aelion, R.; Loebel, A.; Eirich, F. J. Am. Chem. Soc. 1950, 72, 5750. (130) Assink, R. A.; Kay, B. D. J. Non-Cryst. Solids. 1988, 99, 359. (131) Brinker, C. J.; Keefer, K. D; Schaefer, D. W.; Ashley, C. S. J. Non-Cryst. Solids. 1982, 48, 47. (132) Brinker, C. F.; Keefer, K. D.; Schaefer, D. W.; Assink, C. S. J. Non-Cryst. Solids. 1984, 63, 45. (133) Ruby.colorado.edu/~smyth/min/tio2.html (134) Mellott, N. P.; Durucan, C.; Pantano, C. G.; Guglielmi, M. Thin Solid Films 2006, 502, 112. (135) Watanabe, T.; Nakajima, A.; Wang, R.; Minabe, M.; Koizumi, S.; Fujishima, A.; Hashimoto, K. Thin Solid Films 1999, 351, 260. (136) Roméas, V.; Pichat, P.; Guillard, C.; Chopin, T.; Lehaut, C. Ind. Eng. Chem. Res. 1999, 38, 3878. (137) Kaishu, G. Surf. Coat. Technol. 2005, 191, 155. (138) Kruenate, J.; Tongpool, R.; Panyathanmaporn, T.; Kongrat, P. Surf. Interface Anal. 2004, 36, 1044. (139) Lu, C.; Cui, Z.; Guan, C.; Guan, J.; Yang, B.; Sheng, J.; Macromol .Mater. Eng. 2003, 288, 717. (140) Ratna, D.; Becker, O.; Krishnamurthy, R.; Simon, G. P.; Varley, R. J. Polymer 2003, 44, 7449. (141) Mori, H.; Seng, D. C.; Zhang, M.; Mu¨ller, A. H. E. Prog. Colloid. Polym. Sci. 2004, 126, 40. (142) Choudhury, N. R. J. Sol-Gel Sci. Technol. 2004, 31, 37. (143) Zou, J.; Zhao, Y.; Shi, W.; Sheng, X.; Nie, K. Polym. Adv. Technol. 2005, 16, 55. (144) Zou, J.; Shi, W.; Hong, X. Composites: Part A 2005, 36, 631. (145) Fogelstro¨m, L.; Antoni, P.; Malmstro¨m, E.; Hult, A. Prog. Org.Coat. 2006, 55, 284. (146) J. Brinder and G. W. Scherer, Sol-Gel Science, Academic Prress, London, 1990. (147) Yanagisawa, K.; Ovenstone, J. J. Phys. Chem. B 1999, 103, 7781. (148) Chang, C. C.; Chen, W. C. J. Polym. Sci. Polym. Chem. 2001, 39, 3419. (149) Chang, C. M.; Chang, C. L.; Chang, C. C. Macromol. Mater. Eng. 2006, 291, 1521. (150) Chiang, P. C.; Whang, W. T. Polymer 2003, 44, 2249. (151) Nandi, M.; Conklin, J. A.; Salvati, L.; Sen, A. Chem. Mater. 1991, 3, 201. (152) Liu, J. G.; Nakamura, Y.; Ogura, T.; Shibasaki, Y.; Ando, S.; Ueda, M. Chem. Mater. 2008, 20, 273. (153) Su, H. W.; Chen, W. C. J. Mater. Chem. 2008, 18, 1139. (154) Thelen, A.Design of Optical Interference Coatings, New York: McGraw-Hill 1989. (155) Martinu, L.; Poltras, D. J. Vac. Sci. Technol. 2000, 18, 2619. (156) Vassallo, C. Optical Waveguide Concepts, New York: Elsevier 1991. (157) Yoshida, M.; Prasad, P. N. Chem. Mater. 1996, 8, 235. (158) Xu, C.; Eldada, L.; Wu, C.; Norwood, R. A.; Shacklette, L. W.; Yardley, J. T.; Wei, Y. Chem. Mater. 1996, 8, 2701. (159) Kwon, Y. K.; Han, J. K.; Lee, J. M.; Ko, Y. S.; Oh, J. H.; Lee, H. S.; Lee, E. H. J. Mater. Chem. 2008, 18, 579. (160) Enami, Y.; Meredith, G.; Peyghambarian, N.; Kawazu, M.; Jen, A. K. Y. Appl. Phys. Lett. 2003, 82, 490. (161) Shi, Y.; Zhang, C.; Zhang, H.; Bechtel, J. H.; Dalton, L. R.; Robinson, B. H.; Steier, W. H. Science 2000, 288, 119. (162) Delaire, J. A.; Nakatani, K. Chem. Rev. 2000, 100, 1817. (163) Martucci, A.; Innocenzi, P.; Fick, J.; Mackenzie, J. D. J. Non-Cryst. Solids 1999, 244, 55. (164) Gan, F. J. Sol–Gel Sci. Technol, 1998, 13, 559. (165) Qin, F.; Shi, J. L.; Wei, C. Y.; Gu, J. L. J.Mater.Chem. 2008, 18, 634. chpter 2 (1) Laine, R. M. J. Mater. Chem. 2005, 15, 3725 (2) Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. J. Mater.Chem. 2005, 15, 3559. (3) Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J. P. Adv. Mater. 2003, 15, 1969. (4) Chang, C. C.; Chen, W. C. Chem. Mater. 2002, 12, 4242. (5) Yen, C. T.; Chen, W. C.; Liaw, D. J.; Lu, H. Y. Polymer 2003, 44, 7079. (6) Lin, W. J.; Chen, W. C.; Wu, W. C.; Niu, Y. H.; Jen, A. K-Y. Macromolecules, 2004, 37, 2335. (7) Wang, Y. W.; Yen, C. T.; Chen, W. C. Polymer 2005, 46, 6959. (8) Su, H. W.; Chen, W. C.; Lee, W. C.; King, J. S. Macromol. Mater. Eng. 2007, 292, 666. (9) Althues, H.; Henle, J.; Kaskel, S. Chem. Soc. Rev. 2007, 36, 1454. (10) Hsiao, S. H.; Yang, C. P.; Chu, K. Y. Macromolecules 1997, 30, 165. (11) Yang, C. P.; Chen, W. T. Macromolecules 1993, 26, 4865. (12) Imai, Y.; Park, K. H.; Kakimoto, M. A. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1987. (13) Imai, Y.; Takeuchi, H.; Park, K. H.; Kakimoto, M. A.; Kursaki, T. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2656. (14) Kim, W. S.; Ahn, D. K.; Kim, M. W. Macromol. Chem. Phys. 2004, 205, 1932. (15) Liu. J.-G.; Ueda, M. J. Mater. Chem. 2009, 19, 8907. (16) You, N. H.; Suzuki, Y.; Yorifuji, D.; Ando, S.; Ueda, M. Macromolecules 2008, 41, 6361. (17) You, N. H.; Suzuki, Y.; Higashihara, T.; Ando, S.; Ueda, M. Polymer. 2009, 50, 789. (18) Cheng, S. Z. D.; Arnod, F. E.; Zhang, J. A.; Hsu, S. L. C.; Harris, F. W. Macromolecules 1991, 24, 5856. (19) Liou, G. S.; Lin, P. H.; Yen, H. J.; Yu, Y. Y.; Tsai, T. W.; Chen, W. C. J. Mater. Chem. 2010, 20, 531. (20) Tullos, G. L.; Powers, J. M.; Jeskey, S. J.; Mathias, L. J. Macromolecules 1999, 32, 3598. (21) Yuwono, A. H.; Xue, J.; Wang, J.; Elim, H. I.; Ji, W.; Li, Y.; White, T. J. J. Mater. Chem. 2003, 13, 1475. (22) Yuwono, A. H.; Liu, B.; Xue, J.; Wang, J.; Elim, H.; I., Ji, W.; Li, Y.; White, T. J. J. Mater. Chem. 2004, 14, 2978. (23) Yuwono, A. H.; Zhang, Y.; Wang, J.; Zhang, X. H.; Fan, H.; Ji, W. Chem. Mater. 2006, 18, 5876. chapter 3 (1) Willson, D.; Hergenrother, P. M.; Stenzenberer, H. D. in Polyimides, New York 1990. (2) Mercado, R.; Wang, Y.; Flaim, T.; Dimenna, W.; Senapati, U. Proc SPIE 2004, 5351, 276. (3) Ando, S.; Matsuura, T.; Sasaki, S. Polym. J. 1997, 29, 69. (4) Hasegawa, M.; Horie, K. Prog. Polym. Sci. 2001, 26, 259. (5) Hsiao, S. H.; Yang, C. P.; Fan, J. C. J. Polym. Res. 1994, 1, 345. (6) Li, Q.; Fang, X.; Wang, Z.; Gao, L.; Ding, M. J. Polym. Sc.i Part A: Polym. Chem. 2003, 41, 3249. (7) Hsiao, S. H.; Li, C. T. Macromolecules 1998, 31, 7213. (8) Chern, Y. T. ; Shiue, H. C. Macromolecules 1997, 30, 4646. (9) Imai, Y.; Takeuchi, H.; Park, K. H.; Kakimoto, M. A.; Kursaki, T. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2656. (10) Groh, W.; Zimmermann, A. Macromolecules 1991, 24, 6660. (11) Kanatzidis, M. G.; Wu, C.; Marcy, H. O.; DeGroot, D. C.; Kannewurf, C. R. Chem. Mater. 1990, 2, 222. (12) Schmidt, H. K. Macromol. Symp. 1996, 101, 333. (13) Cartenuto, G.; Her, Y. S.; Matijevic, E. Ind. Eng. Chem. Res. 1996, 35, 2929. (14) Chang, C. C.; Chen, W. C. Chem. Mater. 2002, 12, 4242. (15) Yen, C. T.; Chen, W. C.; Liaw, D. J.; Lu, H. Y. Polymer 2003, 44, 7079. (16) Lin, W. J.; Chen, W. C.; Wu, W. C.; Niu, Y. H.; Jen, A. K-Y. Macromolecules 2004, 37, 2335. (17) Wang, Y. W.; Yen, C. T.; Chen, W. C. Polymer 2005, 46, 6959. (18) Su, H. W.; Chen, W. C.; Lee, W. C.; King, J. S. Macromol. Mater. Eng. 2007, 292, 666. (19) Althues, H.; Henle, J.; Kaskel, S. Chem. Soc. Rev. 2007, 36, 1454. (20) Liou, G. S.; Lin, P. H.; Yen, H. J.; Yu, Y. Y.; Tsai, T. W.; Chen, W. C. J. Mater. Chem. 2010, 20, 531. (21) Chang, C. C.; Chen, W. C. J. Polym. Sci Part A: Polym. Chem. 2001, 39, 3419. (22) Su, H. W.; Chen, W. C. J. Mater. Chem., 2008, 18, 1139. (23) Imai, Y; Park, K. H.; Kakimoto, M. A. J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1987. (24) Cheng, S. Z. D.; Arnold, F. E.; Zhang, J. A.; Hsu, S. L. C.; Harris, F. W. Macromolecules 1991, 24, 5856. (25) Tullos, G. L.; Powers, J. M.; Jeskey, S. J.; Mathias, L. J. Macromolecules 1999, 32, 3598. (26) Yuwono, A. H.; Xue, J.; Wang, J.; Elim, H. I.; Ji, W.; Li, Y.; White, T. J. J. Mater. Chem. 2003, 13, 1475. (27) Yuwono, A. H.; Liu, B.; Xue, J.; Wang, J.; Elim, H.; I., Ji, W.; Li, Y.; White, T. J. J. Mater. Chem. 2004, 14, 2978. (28) Liu, J. G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Macromolecules 2007, 40, 4614. (29) You, N. H.; Suzuki, Y.; Yorifuji, D.; Ando, S.; Ueda, M. Macromolecules 2008, 41, 6361. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23493 | - |
| dc.description.abstract | 芳香族聚醯亞胺在光學元件上的應用非常有潛力,但是其應用性受限於低溶解度及難熔性。導入羥基於聚醯亞胺結構中是一個重要的方法,不僅可以有效地提升溶解度,並且提供了有機及無機材料鍵結的反應位置。由於有機/無機混成材料較其單一材料具有機械性質、熱性質、及光學性質上的提昇效果,因此近年來已逐漸受到重視及研究。本研究致力於設計與合成出新穎的高分子/二氧化鈦混成材料並探討其在光學膜上的應用,進而製作出具透明性且高折射率光學膜。
分子設計除了導入羥基,為了達到高折射率及穿透度的目標,還做了其他的元素導入。可增加分子極化率的元素,如硫及氧的元素可增加高分子材料的折射率,而具拉電子的官能基或者酯環化合物則可增加高分子材料的穿透度。 在第二章中,以兩個二胺單體分別含有羥基及六氟官能基與二酸酐(ODPA)製備新穎的可溶性共聚醯亞胺。具有羥基的共聚醯亞胺與四丁基鈦可進一步藉由控制有機/無機莫耳比例成功地製備有機/無機混成光學材料。此光學薄膜(100-500 nm)的折射率可由二氧化鈦含量自由地調控(1.66-1.87)。甚至我們也成功合成出二氧化鈦含量達50 %的光學厚膜(20-30 μm),其光學厚膜同時具有高撓曲性、高機械強度、出色的熱性質、低熱膨脹係數、高折射率,及可見光區的高穿透度。 在第三章中,合成兩個具羥基,且分別含有硫以及芴的新型二胺,與二酸酐(ODPA和6FDA)合成出兩系列新穎的聚醯亞胺,其中一系列具醚鏈結構,另一系列則全是硫的連結,已達使材料有高折射率極高穿透度的目的。具有羥基的聚醯亞胺與四丁基鈦可進一步藉由控制有機/無機莫耳比例成功地製備有機/無機混成光學材料。此光學薄膜(100-500 nm)的折射率可由二氧化鈦含量自由地調控(1.64-1.87)。我們成功的合成出二氧化鈦含量達50 %的光學厚膜(10-15 μm)。此系統的光學厚膜亦具有高撓曲性、高機械強度、出色的熱性質、低熱膨脹係數、高折射率,及可見光區的高穿透度。 | zh_TW |
| dc.description.abstract | Aromatic polyimides with high refractive index could be potentially useful for optoelectronic devices. However, their applicability has usually been limited because of the normally insolubility and infusibility in the fully imidized form. The incorporation of hydroxyl groups on the backbones of the polyimides was an important strategy to ensure the solubility and provided the reactive sites for organic-inorganic bonding. Composites that consist of polymer–inorganic hybrid materials have recently attracted considerable interests due to their enhanced mechanical, thermal, optical properties compared to the corresponding individual inorganic or polymer component. The goal of this study is to develop novel polymer/titania hybrid materials and investigated their applications in optical films. Furthermore, high optical transparency, and high refractive index optical films could also be prepared.
Besides the hydroxyl group, the molecular design approach is applied to reach the high refractive index and transparency goal. The introduction of high polarizability moieties, such as sulfur and oxygen element could make the higher refractive index, and the electron-withdrawing group, such as hexafluorosiopropylidene (6F) group result the high transparency. Chapter 2 prepared the novel soluble co-polyimide with hydroxy- and –CF3-substituted diamine, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, and the sulfur-containing diamine, bis(4-aminophenyl) sulfide, with commercial tetracarboxylic dianhydride ODPA. High refractive index co-polyimide–titania hybrid optical films were successfully prepared from the soluble hydroxy-substituted co-polyimide and titanium butoxide by controlling the organic/inorganic molar ratio. The tunable refractive index (1.66-1.87) of hybrid thin films (100-500 nm) could be obtained by controlling titania content. Moreover, the thick titania hybrid films could also be achieved even with the relatively high titania content as high as 50 wt%. All these obtained hybrid thick films (20-30 µm in thickness) revealed excellent thermal properties with low CTE, good mechanical properties and flexibility, high refractive index, and good optical transparency in the visible region. Chapter 3 included two series of novel soluble polyimides, one is ether type, the other is sulfur-linkage, with hydroxy-substituted which were synthesized from the new diamines, 9,9-bis(4-(4-amino-3-hydroxyphenoxy)phenyl)fluorene and 4,4’-bis(4-amino-3-hydroxyphenylthio)diphenylsulfide, with two commercial tetracarboxylic dianhydride, ODPA and 6FDA, respectively. High refractive index polyimide–titania hybrid optical films were successfully prepared from the soluble hydroxy-substituted polyimides and titanium butoxide by controlling the organic/inorganic molar ratio. The tunable refractive index (1.64-1.87) of hybrid thin films (100-500 nm) could be obtained by controlling titania content. Moreover, the thick titania hybrid films could also be achieved even with the relatively high titania content as high as 50 wt%. All these obtained hybrid thick films (10-15 µm in thickness) revealed excellent thermal properties with low CTE, good mechanical properties and flexibility, high refractive index, and good optical transparency in the visible region. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:02:26Z (GMT). No. of bitstreams: 1 ntu-99-R97549004-1.pdf: 5675268 bytes, checksum: 884b66a3f442f5cb32f5afba25193e86 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | CHAPTER 1
General Introduction 1 1-1 HIGH PERFORMANCE POLYMERS 2 1-1.1 Preparation of Aromatic Polyimides 4 1-1.2 Modification of Aromatic Polyimides 6 1-1.3 Modification of PI by Incorporation of Hydroxyl Group 8 1-1.4 Modification of PI by Incorporation of Fluoro- and Sulfur-Element 9 1-2 HIGH REFRACTIVE INDEX MATERIALS 10 1-3 FUNCTIONAL HYBRID ORGANIC-INORGANIC NANOCOMPOSITES 16 1-3.1 Background of Sol-gel Chemistry 19 1-3.2 Titania Based Hybrid Nanocomposites 24 1-3.3 Hydrothermal Crystallization 26 1-3.4 Titania-Polyimide Hybrids 28 1-4 OPTICAL AFFECT OF HYBRID NANOCOMPOSITES 34 1-5 OPTICAL APPLICATIONS OF HIGH RI NANOCOMPOSITES 35 1-6 RESEACH MOTIVATION 37 REFERENCES AND NOTES 38 CHAPTER 2 Highly Flexible and Transparent Co-polyimide/TiO2 Optical Hybrid Films with Tunable Refractive Index and High Thermal Stability 45 ABSTRACT OF CHAPTER 2 46 2-1 INTRODUCTION 47 2-2 EXPERIMENTAL SECTION 49 2-2.1 Materials 49 2-2.2 Polymer Synthesis 49 2-2.3 Preparation of the Polymer Film 49 2-2.4 Preparation of the Co-polyimide-Titania Hybrid Films 50 2-2.5 Measurements 54 2-3 RESULTS AND DISCUSSION 56 2-3.1 Co-polymer Synthesis 56 2-3.2 Co-polymer Properties 59 Basic Characterization 59 Thermal Property 59 2-3.3 Synthesis of Co-polyimide-Titania Hybrid Materials 60 2-3.4 Hybrid Material Properties 60 Structural characterizations 60 Thermal Properties 62 Morphology Analyses 67 Optical Properties 71 2-4 SUMMARY 76 REFERENCES AND NOTES 77 CHAPTER 3 Facile Preparation for Nanocrystalline-Titania Hybrids from Hydroxyl- Containing Polyimide: Novel Flexible PI-TiO2 Optical Films with High Refractive Index, Good Optical Transparency, and Excellent Thermally Stability 78 ABSTRACT OF CHAPTER 3 79 3-1 INTRODUCTION 80 3-2 EXPERIMENTAL SECTION 82 3-2.1 Materials 82 3-2.2 Monomer Synthesis 82 9,9-bis(4-(3-benzyloxy-4-nitrophenoxy)phenyl)fluorene (F-1) 82 9,9-bis(4-(4-amino-3-benzyloxyphenoxy)phenyl)fluorene (F-2) 83 4,4’-Bis(3-hydroxy-4-nitrophenylthio)diphenylsulfide (3S-1) 83 4,4’-Bis(4-amino-3-hydroxyphenylthio)diphenylsulfide (3S-2) 84 4,4’-Bis(3-benzyloxy-4-nitrophenylthio) diphenylsulfide (3S-3) 84 4,4’-Bis(4-amino-3-benzyloxyphenylthio) diphenylsulfide (3S-4) 85 3-2.3 Polymer Synthesis 94 Poly(o-hydroxy-imide)s PHIa~PHIb & Poly(o-benzoxy- imide) PBI 94 3-2.4 Preparation of the Polymer Films 96 3-2.5 Preparation of Polyimide-Titania Hybrid Films 96 3-2.6 Measurements 100 3-3 RESULTS AND DISCUSSION 102 3-3.1 Monomer Synthesis 102 3-3.2 Polymer Synthesis 103 Poly (o-hydroxy-imide)s-PHIa~PHIb 103 Poly (o-benzoxyl-imide)- 3S-PBI 104 3-3.3 Polymer Properties 108 Basic Characterization 108 Thermal Properties 108 Optical Properties 110 3-3.4 Synthesis of Polyimide-Titania Hybrid Materials 112 3-3.5 Hybrid Material Properties 112 Structural characterizations 112 Thermal Properties 115 Morphology Analyses 123 Optical Properties 128 3-4 SUMMARY 135 REFERENCES AND NOTES 136 CHAPTER 4 Conclusion 138 | |
| dc.language.iso | en | |
| dc.title | 新型含硫之聚醯亞胺-二氧化鈦混成奈米複合光學材料之設計、合成與其性質研究 | zh_TW |
| dc.title | Design, Synthesis, and Characterizations of Novel Sulfur-containing Aromatic Polyimide-Nanocrystalline-Titania Hybrid Optical Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭勝輝(Sheng-Huei Hsiao),陳志堅(Jyh-Chien Chen),陳燿騰(Yaw-Terng Chern) | |
| dc.subject.keyword | 聚醯亞胺,二氧化鈦,混成,高折射率,高穿透度,光學薄膜, | zh_TW |
| dc.subject.keyword | polyimide,titania,hybrid,high refractive index,transparency,optical films, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
