請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23475完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂學士 | |
| dc.contributor.author | Shuo-Wen Chang | en |
| dc.contributor.author | 張碩文 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:02:10Z | - |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | [1] T. A. Riley, M. Copeland, and T. Kwasniewski, “Delta-Sigma modulation in fractional-N frequency synthesis,” IEEE Journal of Solid-State Circuits, vol. 28, no. 5, pp.553—559, May 1993
[2] W. Rhee, B. Song, and A. Ali, “A 1.1-GHz CMOS fractional-N frequency synthesizer with a 3-bit third-order ΔΣ modulator,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1453—1460, Oct. 2000 [3] H. Lee, J. Cho, K. Lee, I. Hwang, T. Ahn, K. Nah, and B. Park, “A Σ-Δ fractional-N frequency synthesizer using a wide-band integrated VCO and a fast AFC technique for GSM/GPRS/WCDMA applications.” IEEE Journal of Solid-State Circuits, vol. 39, no.7, pp. 1164—1169, July 2004. [4] D. Banerjee, PLL performance, simulation, and design, National Semiconductor, available on: http://webench.national.com/appinfo/wireless/files/deansbook4.pdf [5] Kral, A., Behbahani, F., and Abidi, A.A, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom IC Conference, May 1998, pp. 555-558. [6] Z. Li and K. K. O., “A 1-V Low Phase Noise Multi-Band CMOS Voltage-Controlled Oscillator with Switched Inductors and Capacitors,” in IEEE RFIC Symposium, pp.467-470, June 2004. [7] J. Craninckx and M.S.J. Steyaert, “A 1.75GHz/3V dual-modulus divide -by-128/129 prescaler in 0.7-μm CMOS,” IEEE J. Solid-State Circuits, pp.890-897, July 1996. [8] T. S. Aytur and B. Razavi, “A 2-GHz, 6-mW BiCMOS Frequency Synthesizer,” IEEE J. Solid-State Circuits, vol. 30, pp.1457-1462, Dec. 1995 [9] C. Vaucher and D. Kasperkovitz, “A wide-band tuning system for fully integrated satellite receivers,” IEEE J. Solid-State Circuits, pp.987-997, July 1998. [10] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” Proc. of IEEE International Symp. on Circuits and Systems, vol. 2, 1999, pp. 545-548. [11] Keliu Sue, Edgar Sanchez-Sinencio, CMOS PLL Synthesizers: Analysis and Design, 2005, ISBN 0-387-23668-6 [12] F. T. Lee, “A Fractional-N Frequency Synthesizer for 315/433/868/915 MHz ISM Bands”, Master Thesis, NTU, July 2007 [13] National Semiconductor, An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump PLLs, Application Note 1001, Jul. 2001 [14] T. Lee, Design of Radio Frequency Integrated Circuits, Cambridge University Press, 1997 [15] S. H. Lin, CMOS PLL-Based Frequency Synthesizers for Broadband Wireless Communication System, Master Thesis, NTU, July 2008 [16] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp.717-724, May 1999 [17] F. J. Liao, Chipset for Wireless Biotelemetry Circuits, Master Thesis, NTU, Jan. 2005 [18] Donhee Ham and Ali Hajimiri, “Concepts and Methods in Optimization of Integrated LC VCOs,” IEEE Journal of Solid-State Circuits, vol. 36, no. 6, June 2001 [19] W.B. Wilson, U. –K. Moon, K. R. Lakshmikumar, and L. Dai,“ A CMOS Self-Calibrating Frequency Synthesizer,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp.1437-1444, Oct. 2000. [20] T. –H. Lin and W. J. Kaiser, “A 900-MHz 2.5-mA CMOS Frequency Synthesizer with an Automatic SC Tuning Loop, ” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp.424-431, Mar. 2001. [21] T. –H. Lin and Y. –J. Lai, “An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp.340-349, Feb. 2007. [22] J.-C. Chien and L.-H. Lu, “Ultra-low-voltage CMOS static frequency divider,” Asian Solid-State Circuits Conference, pp. 209-212, Nov. 2005 [23] Y. H. Wang, “A Frequency Synthesizer and Low-noise Amplifiers for Wireless Communication”, Master Thesis, NTU, June 2009 [24] C. Wann, J. Harrington, R. Mih, S. Biesemans, K. Han, R. Dennard, O. Prigge, C. Lin, R. Mahnkopf, and B. Chen, 'CMOS with active well bias for low-power and RF/Analog applications,' Symposium on VLSI Technology Digest of Technical Papers, pp. 158-159, 2000. [25] S. Shin, K. Lee and S.-M. Kang, “3.48mW 2.4GHz range Frequency Synthesizer Architecture with Two-Point Channel Control for Fast Settling Performance,” in SOC Conference, 2005. Proceedings. IEEE International, Sept.2005. [26] S. Shin, K. Lee, and S. M. Kang, “4.2mW CMOS frequency synthesizer for 2.4GHz ZigBee application with fast settling time performance,” IEEE Int. Microwave Theory and Tech. Symp., pp. 411-414, 2006. [27] Y. C. Yang, “The Design and Application of CMOS Fully-Integrated PLL-Based Fractional-N Frequency Synthesizers”, Doctoral Dissertation, NTU, June 2007. [28] K. C. Peng, “Wideband GFSK-Modulated Frequency Synthesizer Using Two-Point Delta-Sigma Modulation”, Doctoral Dissertation, April 2005. [29] S.-A. Yu and P. Kinget, “A 0.65 V 2.5 GHz fractional-N frequency synthesizer in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 304–305. [30] Ismail. N. M. H, and Othman. M, “System analysis of 2.4 GHz IEEE 802.15.4 compliant frequency synthesizer ,” Microelectronics(ICM). pp. 197-200, Feb. 2009 [31] Rui Yu; Theng-Tee Yeo; Kwang-Hung Tan; Shouxian Mou; Yike Cui; Haifeng Wang; Hwa-Seng Yap; Ting, E.; Itoh, M, “A 5.5mA 2.4-GHz two-point modulation Zigbee transmitter with modulation gain calibration,” Custom Integrated Circuits Conference, 2009. CICC '09. IEEE, pp 375-278, 2009 [32] Timarm, A.; Vamos, A.; Bognar, G, “Comprehensive design of a high frequency PLL synthesizer for ZigBee application ,” Design and Diagnostics of Electronic Circuits and systems, 2006 IEEE, pp 37-41 [33] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May 1999. [34] B. Razavi, “RF Microelectronics”, Prentice-Hall, 1998 [35] B. Razavi. “Design of Analog CMOS Integrated Circuits”, McGraw-Hill, 2001 [36] 劉深淵, 楊清淵, “鎖相迴路”, 滄海書局, 2006年 [37] E5052A Signal Source Analyzer (SSA) Demonstration Guide Using Demo Kits [38] J. Lin, “A low-phase-noise 0.004-ppm/step DCXO with guaranteed monotonicity in the 90-nm CMOS process,” IEEE J. Solid-State Cir-cuits, vol. 40, no. 12, pp. 2726–2734, Dec. 2005. [39] J. L. Bohorquez, J. L. Dawson, and A. P. Chandrakasan, “A 350uW CMOS MSK Transmitter and 400uW OOK Super-Regenerative Receiver for Medical Implant Communications,” IEEE Symposium on VLSI Circuits Dig. Tech. Papers, pp. 32-33, June 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23475 | - |
| dc.description.abstract | 在本論文中,我們在台積電零點一八微米金氧半製程下,實現了兩個符合Zigbee應用規範的頻率合成器。其分別為整數型和分數型之頻率合成器,且操作頻率皆涵蓋2.4GHz~2.48GHz(Zigbee應用頻段)。Zigbee是一種類似藍芽的通訊協定,其具有低功率消耗、較慢傳輸速度需求、低成本等特色。電路實作的內容概要如下:
第一塊電路是一個符合Zigbee規格的整數型頻率合成器。為了降低其功率消耗,整塊電路都是操作於低電壓1.2伏特,並採用基極偏壓方法和短通道效應降低系統所需之操作最高電壓。從實驗結果可知,整顆頻率合成器只消耗12.62毫瓦。 第二塊電路為一個符合Zigbee規格的分數型頻率合器。和第一顆頻率合成器一樣皆操作在1.2伏特的低電壓。此電路使用三角積分調變器來實現分數型頻率合成器,因為它的分數突波較小,且其具有將量化雜訊移往高頻去的特性。另外,我們利用兩點調變的技巧,在壓控震盪器的輸入端加入一條具高通特性的調變路徑,減少頻率合成器跳頻鎖定所需的時間,進而降低整個無線收發器系統的功率消耗。由實驗結果可知,其鎖定時間減少為36微秒 最後,我們將根據實驗結果比較此兩顆頻率合成器的優劣,並作個總結。 | zh_TW |
| dc.description.abstract | An integer-N and a fractional-N frequency synthesizers for Zigbee standard are realized in TSMC 0.18-um process are presented in this thesis, and the frequency bands of the operation are also cover 2.4GHz~2.48GHz (Zigbee band). Zigbee is a wireless protocol which is similar to Bluetooth, and it has some features, such as low power, low data rate, and low cost. Two frequency synthesizers are introduced as follows:
The first chip is an integer-N frequency synthesizer for Zigbee standard. The whole system is operated at a low supply voltage 1.2-V in order to lower the power consumption. In addition, forward body-biasing technique and reverse short channel effect are used to lower the requirement of the supply voltage in the frequency synthesizers. According to the measurement results we can know the whole frequency synthesizer only consumes 12.62 mW. The second chip is a fractional-N frequency synthesizer for Zigbee standard. This frequency synthesizer is operated at a low supply voltage 1.2-V, which is the same as the first one chip. A delta-sigma modulator is adopted in this circuit to implement the fractional-N frequency synthesizer due to its lower spurs magnitude and high-pass noise shaping ability. In addition, a technique of the two-point channel control is used to add an additional high-pass control path to tune the VCO in order to reduce the PLL settling time. Furthermore, the power consumption of the wireless transceiver can be reduced. According to the measurement results we can know the PLL settling time is reduced to 36us. Finally, we compare advantages and shortcomings in these two frequency synthesizers according to the measurement results, and make a conclusion | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:02:10Z (GMT). No. of bitstreams: 1 ntu-100-R98943063-1.pdf: 4423802 bytes, checksum: 61588d3de893ea5e02be87ef7a1be078 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III ABSTRACT V CONTENTS VII List of figures X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Fundamentals of Phase-Locked Loops 4 2.1 Basic Operation of the PLL 5 2.2 General Considerations 6 2.2.1 Phase Noise 6 2.2.2 Spurs 9 2.2.3 Lock Time 10 2.3 Building Blocks of Charge Pump PLL 11 2.3.1 Voltage-Controlled Oscillator (VCO) 11 2.3.2 Frequency Divider 14 2.3.3 Phase/Frequency Detector (PFD) 19 2.3.4 Charge Pump (CP) 22 2.3.5 Loop Filter 25 2.4 Analysis of the Loop System 26 2.4.1 Linear Transfer Function of the PLL 26 2.4.2 Linear Model of the PLL 27 Chapter 3 Fractional-N frequency Synthesizers 34 3.1 Introduction of the Integer-N/ Fractional-N Synthesis 35 3.1.1 Integer-N Frequency Synthesis 35 3.1.2 Fractional-N Frequency Synthesis 36 3.2 Quantization Noise 37 3.3 Delta-Sigma Modulator 39 Chapter 4 2.4GHz Integer/Fractional-N Frequency Synthesizers for Zigbee Standard 43 4.1 Introduction 43 4.2 Integer-N Frequency Synthesizer I 45 4.2.1 Architecture 45 4.2.2 LC-tank VCO with Switched-Capacitors Array 46 4.2.3 Truly Modular Divider with Division Ratio Extension 51 4.2.4 Switched-Mode Phase/Frequency Detector 59 4.2.5 Charge Pump with Forward Body-Biasing Technique 61 4.2.6 Third-Order Loop Filter 65 4.2.7 Quadrature Signal 66 4.3 Fractional-N Frequency Synthesizer II with Two-Point Channel Control 68 4.3.1 Introduction 68 4.3.2 Architecture 69 4.3.3 Reduced ΔΣ Modulator (DSM) 70 4.3.4 Auto-Frequency Calibration Loop (AFC) 72 4.3.5 Two-Point Channel Control for Fast Settling Performance 76 4.3.6 Digital-to-Analog Converter (DAC) 80 4.4 Measurement Results 82 4.4.1 Frequency Synthesizer I 82 4.4.2 Frequency Synthesizer II 91 4.4.3 Summary 99 Chapter 5 Conclusion 100 References…………………………………………………………………………….102 Appendix A PLL Measurements by SSA………………………………...………...106 Appendix B DCO for MICS Band………………………………..………………111 | |
| dc.language.iso | en | |
| dc.title | 適用於Zigbee系統之整數/分數型低功率頻率合成器 | zh_TW |
| dc.title | Integer-N and Fractional-N Low Power
Frequency Synthesizers for Zigbee System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫台平,邱弘緯,陳筱青,汪濤 | |
| dc.subject.keyword | 頻率合成器,Zigbee,兩點調變技術,低功耗,鎖相迴路, | zh_TW |
| dc.subject.keyword | synthesizers,Zigbee,two-point channel control,low power,PLL, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
