請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23471完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀 | |
| dc.contributor.author | Yen-Chang Chu | en |
| dc.contributor.author | 褚晏彰 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:02:07Z | - |
| dc.date.copyright | 2010-08-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-23 | |
| dc.identifier.citation | 1. Kabosova A, Azar DT, Bannikov GA, et al. Compositional differences between infant and adult human corneal basement membranes. Invest Ophthalmol Vis Sci 2007;48(11):4989-99.
2. Brejchova K, Liskova P, Cejkova J, Jirsova K. Role of matrix metalloproteinases in recurrent corneal melting. Exp Eye Res;90(5):583-90. 3. Forrester JV, Lois N, Zhao M, McCaig C. The spark of life: the role of electric fields in regulating cell behaviour using the eye as a model system. Ophthalmic Res 2007;39(1):4-16. 4. Reid B, Song B, McCaig CD, Zhao M. Wound healing in rat cornea: the role of electric currents. FASEB J 2005;19(3):379-86. 5. Song B, Zhao M, Forrester J, McCaig C. Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. J Cell Sci 2004;117(Pt 20):4681-90. 6. Aaron RK, Boyan BD, Ciombor DM, et al. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 2004(419):30-7. 7. Mycielska ME, Djamgoz MB. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 2004;117(Pt 9):1631-9. 8. Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol 2009;20(6):674-82. 9. Robinson KR. The responses of cells to electrical fields: a review. J Cell Biol 1985;101(6):2023-7. 10. Soong HK, Parkinson WC, Bafna S, et al. Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields. Invest Ophthalmol Vis Sci 1990;31(11):2278-82. 11. Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 1996;109 ( Pt 1):199-207. 12. Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys J 2000;79(1):144-52. 13. Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 1998;78(4):949-67. 14. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310(5751):1139-43. 15. Engler AJ, Griffin MA, Sen S, et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 2004;166(6):877-87. 16. Engler A, Bacakova L, Newman C, et al. Substrate compliance versus ligand density in cell on gel responses. Biophys J 2004;86(1 Pt 1):617-28. 17. Georges PC, Janmey PA. Cell type-specific response to growth on soft materials. J Appl Physiol 2005;98(4):1547-53. 18. Solon J, Levental I, Sengupta K, et al. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 2007;93(12):4453-61. 19. Takai E, Costa KD, Shaheen A, et al. Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann Biomed Eng 2005;33(7):963-71. 20. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260(5111):1124-7. 21. Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 1997;88(1):39-48. 22. Riveline D, Zamir E, Balaban NQ, et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 2001;153(6):1175-86. 23. Wang HB, Dembo M, Hanks SK, Wang Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci U S A 2001;98(20):11295-300. 24. Li S, Butler P, Wang Y, et al. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci U S A 2002;99(6):3546-51. 25. Wozniak MA, Desai R, Solski PA, et al. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 2003;163(3):583-95. 26. Wallace C, Jacob JT, Stoltz A, et al. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces. J Biomed Mater Res A 2005;72(1):19-24. 27. Gunn JW, Turner SD, Mann BK. Adhesive and mechanical properties of hydrogels influence neurite extension. J Biomed Mater Res A 2005;72(1):91-7. 28. Zaman MH, Trapani LM, Sieminski AL, et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 2006;103(29):10889-94. 29. Georges PC, Hui JJ, Gombos Z, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol 2007;293(6):G1147-54. 30. Wells RG. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol 2005;39(4 Suppl 2):S158-61. 31. Genes NG, Rowley JA, Mooney DJ, Bonassar LJ. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch Biochem Biophys 2004;422(2):161-7. 32. Dua HS, Gomes JA, King AJ, Maharajan VS. The amniotic membrane in ophthalmology. Surv Ophthalmol 2004;49(1):51-77. 33. Grueterich M, Espana EM, Tseng SC. Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 2003;48(6):631-46. 34. Riau AK, Beuerman RW, Lim LS, Mehta JS. Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials;31(2):216-25. 35. Chao PH, Roy R, Mauck RL, et al. Chondrocyte translocation response to direct current electric fields. J Biomech Eng 2000;122(3):261-7. 36. Resch MD, Schlotzer-Schrehardt U, Hofmann-Rummelt C, et al. Adhesion structures of amniotic membranes integrated into human corneas. Invest Ophthalmol Vis Sci 2006;47(5):1853-61. 37. Cooper LJ, Kinoshita S, German M, et al. An investigation into the composition of amniotic membrane used for ocular surface reconstruction. Cornea 2005;24(6):722-9. 38. Hampson V, Liu D, Billett E, Kirk S. Amniotic membrane collagen content and type distribution in women with preterm premature rupture of the membranes in pregnancy. Br J Obstet Gynaecol 1997;104(9):1087-91. 39. Sippel KC, Ma JJ, Foster CS. Amniotic membrane surgery. Curr Opin Ophthalmol 2001;12(4):269-81. 40. Abrams GA, Schaus SS, Goodman SL, et al. Nanoscale topography of the corneal epithelial basement membrane and Descemet's membrane of the human. Cornea 2000;19(1):57-64. 41. Flemming RG, Murphy CJ, Abrams GA, et al. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999;20(6):573-88. 42. Karuri NW, Liliensiek S, Teixeira AI, et al. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J Cell Sci 2004;117(Pt 15):3153-64. 43. Liliensiek SJ, Campbell S, Nealey PF, Murphy CJ. The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts. J Biomed Mater Res A 2006;79(1):185-92. 44. Teixeira AI, Nealey PF, Murphy CJ. Responses of human keratocytes to micro- and nanostructured substrates. J Biomed Mater Res A 2004;71(3):369-76. 45. Lee JH, Lee HK, Kim JK, et al. Expression of laminin-5 with amniotic membrane transplantation in excimer laser ablated rat corneas. J Cataract Refract Surg 2004;30(10):2192-9. 46. Ebihara N, Mizushima H, Miyazaki K, et al. The functions of exogenous and endogenous laminin-5 on corneal epithelial cells. Exp Eye Res 2000;71(1):69-79. 47. Kurpakus-Wheater M. Laminin-5 is a component of preserved amniotic membrane. Curr Eye Res 2001;22(5):353-7. 48. Champliaud MF, Lunstrum GP, Rousselle P, et al. Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol 1996;132(6):1189-98. 49. Sheridan DM, Isseroff RR, Nuccitelli R. Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J Invest Dermatol 1996;106(4):642-6. 50. Prang P, Muller R, Eljaouhari A, et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 2006;27(19):3560-9. 51. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999;20(1):45-53. 52. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996;12:697-715. 53. Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 2002;60(2):217-23. 54. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006;6(8):623-33. 55. Lee KY, Alsberg E, Mooney DJ. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J Biomed Mater Res 2001;56(2):228-33. 56. Mauck RL, Soltz MA, Wang CC, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 2000;122(3):252-60. 57. Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J Struct Biol 2009;167(1):19-24. 58. Pelham RJ, Jr., Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 1997;94(25):13661-5. 59. Kong HJ, Liu J, Riddle K, et al. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat Mater 2005;4(6):460-4. 60. Pelham RJ, Jr., Wang YL. Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 1998;194(3):348-9; discussion 9-50. 61. Guo WH, Frey MT, Burnham NA, Wang YL. Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 2006;90(6):2213-20. 62. Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996;273(5272):245-8. 63. Jay PY, Pham PA, Wong SA, Elson EL. A mechanical function of myosin II in cell motility. J Cell Sci 1995;108 ( Pt 1):387-93. 64. Pelham RJ, Jr., Wang Y. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell 1999;10(4):935-45. 65. Lo CM, Buxton DB, Chua GC, et al. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol Biol Cell 2004;15(3):982-9. 66. Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004;4(11):839-49. 67. Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005;8(3):241-54. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23471 | - |
| dc.description.abstract | 細胞遷移出現在許多生理現象,例如傷口癒合,腫瘤細胞的轉移,器官發育,免疫反應以及人體形態上的變化。影響細胞遷移有許多因素,包括電場,基質的軟硬度,以及周遭化學物質的濃度。羊膜常常被用來治療角膜持久不癒合的表皮層缺損。為了瞭解羊膜能夠幫助傷口癒合的機轉,我們使用牛的角膜表皮細胞,用外加電場來模擬傷口上的內生電場,以各種不同的基質觀察細胞在其上的遷移現象。我們發現在羊膜及角膜的基底膜,以及低濃度的膠原蛋白上可以得到最快的遷移速度以及最好的方向性。第一型及第四型膠原蛋白的影響大於纖維結合蛋白和基膜粘連蛋白。此時多數細胞呈現紡錘狀並且產生較多細胞遷移時出現的偽足。我們進一步利用不同軟硬度的海藻膠來研究細胞遷移,發現細胞確實受基質的機械性質所影響,細胞偏好在較硬的基質上移動。因此當我們考慮促進傷口癒合的同時,基質表面的物理性質是一項重要的考量。本篇研究有助於了解傷口癒合的機制以及作為治療上的參考。 | zh_TW |
| dc.description.abstract | Cell migration involves in many fields, such as wound healing, tumor metastasis, organ development, immune response and morphological change. Cell migration is affected by many factors, such as electric field, rigidity of the substrate, and chemical gradient. Amniotic membrane (AM) is commonly used to treat persistent corneal injuries. In an attempt to understand mechanisms behind this enhancement of the healing process, bovine corneal epithelial cells were used to examine cell migration on the various substrates. External electric field was applied to simulate the intrinsic current generated at corneal wound edges. Higher migration speed and directional velocity were found on the basement membrane side of AM, cornea section and on lower collagen concentrations. Collagen type I and type IV both benefit cell migration rather than fibronectin and laminin. At the same time, most cells assume a spindle shape and form more lamellipodia in these conditions that may correspond with the migration result. The studies on calcium alginate with varied stiffness prove that cell responses to differential mechanical forces between cell and substrate, and cells prefer to migrate on maximal mechanical input. When enhancing wound healing with any substrate, the physical properties of surface is always something to be considered. Result from this study may benefit our understanding of the cornea wound healing mechanism and provide further treatment options. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:02:07Z (GMT). No. of bitstreams: 1 ntu-99-R97548051-1.pdf: 984836 bytes, checksum: 65a2fd2bc2cd611261328e22e1de210d (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書… 2
誌謝… 3 中文摘要… 4 英文摘要… 5 Introduction… 8 Materials and methods… 12 Results… 15 Discussion… 19 References… 25 附錄… 34 | |
| dc.language.iso | en | |
| dc.title | 基質硬度影響角膜表皮細胞在電場中之遷移 | zh_TW |
| dc.title | Stiffness of Substrate Affects Corneal Epithelial Cells Migration in Electric Fields | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊台鴻,朱士維 | |
| dc.subject.keyword | 羊膜,硬度,遷移,基底膜,角膜,電場, | zh_TW |
| dc.subject.keyword | Amniotic membrane,Stiffness,Migration,Basement membrane,Cornea,Electric field, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 961.75 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
