請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23410
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李嗣涔 | |
dc.contributor.author | Yi-Jen Chen | en |
dc.contributor.author | 陳逸仁 | zh_TW |
dc.date.accessioned | 2021-06-08T05:01:17Z | - |
dc.date.copyright | 2011-01-17 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2011-01-13 | |
dc.identifier.citation | [1] S. Tans, A. Verschueren, C. Dekker, Nature (London) 393, 49 (1998)
[2] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998) [3] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002) [4] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Nano Lett. 1, 453 (2001) [5] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, Nano Lett. 2, 869 (2002) [6] D. Appell, Nature (London) 419, 553 (2002) [7] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424, 654 (2003) [8] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 73, 3396 (1998) [9] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 75, 1842 (1999) [10] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science 287, 1471(2000) [11] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2000) [12] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science 294,1313 (2001) [13] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 3, 149 (2003) [14] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415, 617 (2002) [15] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293, 1289 (2001) [16] D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S.Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, S. Q. Feng, Phys. Rev. B 59, R2498 (1999) [17] S. Chung, J. Yu, J. R. Heath, Appl. Phys. Lett. 76, 2068 (2000) [18] J. Qi, A. M. Belcher, and J. M. White, Appl. Phys. Lett. 82, 2616 (2003) [19] A.F. Fennimore et al., Science 304, 74 (2004) [20] K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, S. W. Novak, Appl. Phys. Lett. 85, 3101 (2004) [21] C. Y. Meng, B. L. Shih, S. C. Lee, J. Nanopart. Res. 7, 615 (2005) [22] Y. Wang, K. Lew, T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing, T. S. Mayer, Nano Lett. 5, 2139 (2005) [23 ]Y. Cui and C. M. Lieber, Science 291, 851 (2001) [24] Tsung-ta Ho, Yanfeng Wang, Theresa S. Mayer, et al. Nano lett. 8, 4359(2008) [25] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997) [26] A. M. Morales and C. M. Lieber, Science 279, 208 (1998) [27] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998) [28] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15, 635 (2003) [29] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, 71 (2000) [30] Nicholas A. Melosh, Akram Boukai, Frederic Diana, Brian Gerardot, Antonio Badolato, Pierre M. Petroff, James R. Heath, Science, 300 , pp. 112 – 115 (2003) [31] R. S. Wagner ,W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964) [32] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001) [33] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997) [34] A. M. Morales and C. M. Lieber, Science 279, 208 (1998) [35] D. Rugar, R. Budakian, H. J. Mamin & B. W. Chui D. Rugar, R. Budakian, H. J. Mamin & B. W. Chui, Nature, 430, 329-332 (2004) [36] Hsin-Ying Chiu, Peter Hung, Henk W. Ch. Postma, and Marc Bockrath, Nano lett. 8, 4342-4346 (2008) [37] B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, J. Appl. Phys. 95, 3694 (2004) [38] A. Husain, J. Hone, Henk W. Ch. Postma, X. M. H. Huang, T. Drake, M. Barbic, A. Scherer, and M. L. Roukes, Appl. Phys. Lett. 83, 1240 (2003) [39] H. B. Peng, C. W. Chang, S. Aloni, T. D. Yuzvinsky, and A. Zettl, Phys. Rev. Lett. 97, 087203 (2006) [40] X. L. Feng, Rongrui He, Peidong Yang, and M. L. Roukes, Nano lett. , 7, 1953 (2007) [41] C. T.-C. Nguyen, MEMBER, IEEE, L. P.B. Katehi, FELLOW, IEEE, and G. M. Rebeiz, FELLOW, IEEE, Proc. IEEE, 86, 1756-1768 (1998) [42] Vera Sazonova, Yuval Yaish, Hande Üstünel, David Roundy, Tomás A. Arias & Paul L. McEuen, Nature 431, 284-287 (2004) [43] Robert G. Knobel, Andrew N. Cleland, Nature 424, 291-293 (2003) [44] Givargizov E. I., J. Chem. Physm. 31,20 (1975) [45] A. Ural, Y. Li, H. Dai, Appl. Phys. Lett. 81, 3464 (2002) [46] Y.Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmes, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001) [47] E. Joselevich, C. M. Lieber, Nano Lett. 2, 1137 (2001) [48] Neamen, Semiconductor physics and devices(third Edition), McGRAW. HILL, Fig5.4 [49] Mingwei Li, Rustom B. Bhiladvala, Thomas J. Morrow, Theresa S. Mayer, Nature Nanotechnology 3, 88 - 92 (2008) [50] Sourobh Raychaudhuri, Shadi A. Dayeh, Deli Wang, and Edward T. Yu, Nano. Lett. 9, 2260 (2009) [51] Jones, T. B. Electromechanics of Particles; Cambridge University Press: New York, NY, 1995. [52] Ongi Englander, Dane Christensen, Jongbaeg Kim, Liwei Lin, and Stephen J. S. Morris, Nano. Lett, 5, 705 (2005) [53] Hao-Ming Huang, S.C. Lee, The Fabrication and Electrical Characteristics of Orientation Controlled Silicon Nanowires, 台灣大學電子所碩士論文 [54] I-Chen Tung, S.C.Lee, The Mechanisms of Electric-Field-Directed Growth of Silicon Nanowires, 台灣大學電子所碩士論文 [55] Hung Ting-Hsiang, S.C.Lee, The Growth Mechanism and Electrical Characteristics of p-n Junction Silicon Nanowires, 台灣大學電子所碩士論文 [56] Yu-Fan Chen, S.C.Lee, The Electrical Characteristics of the Electric-Field Directed Growth of Silicon Nanowires and Ohmic Contact Formation, 台灣大學電子所碩士論文 [57] Chen-Yun Wang, S.C.Lee, The Growth and Characteristics of p-i-n Silicon Nanowire Device, 台灣大學電子所碩士論文 [58] Hari S. Solanki, Shamashis Sengupta, Mandar M. Deshmukh, Phys. Rev. B, 81, 115459 (2010) [59] Herbert A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, 1978. [60] Jae-Woong Lee, Kyeong-Ju Moon, Moon-Ho Ham1, Jae-Min Myoung, Solid State Communications, 148 (2008) 194–198 [61] Yong Zhu, Feng Xu, Qingquan Qin, Wayne Y. Fung, and Wei Lu, Nano. Lett, 9, 3934 (2009) [62] Wayne Y. Fung, Eric N. Dattoli, Wei Lu, Appl. Phys. Lett. 94, 203104 (2009) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23410 | - |
dc.description.abstract | 本論文研究利用化學氣相沉積法經由VLS成長機制及電場導向法成長n型及p型摻雜之矽奈米線。並發現藉由在成長方向上沉積數個獨立的金屬島,可引發局部感應電場並增強奈米線導向性。此外,亦結合感應電場導向、FIB及四點探針法量測n型及p型矽奈線的電阻率和摻雜濃度。
本論文亦利用介電泳法定位矽奈米線之位置,藉以製備矽奈米線振盪器。並利用電激發法來量測該振盪器的共振頻率。最後,經過施加外部彎曲應力來製備可調頻的矽奈米線振盪器。 | zh_TW |
dc.description.abstract | Electric-field-directed growth of n-type and p-type silicon nanowires by vapor-liquid-solid (VLS) mechanism in a low pressure chemical vapor deposition (LPCVD) system is demonstrated. By depositing several isolate metal pads in the growth direction, the local-induced-electric-field is created. Therefore, the SiNWs appeared to experienced stronger electric force and have better directivity. Furthermore, Local-Induced-Electric-Field, Focus Ion Beam and Four-Point-Probe method are used to measure the resistivity and doping concentration of n-type and p-type SiNW.
Dielectrophoresis is used to place SiNW and fabricate SiNW resonator. The oscillation frequency of the resonator is measured by electrical activation method. At last, a frequency tunable SiNW resonator by applying external bending force is presented. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:01:17Z (GMT). No. of bitstreams: 1 ntu-99-R97943090-1.pdf: 5364288 bytes, checksum: 89af3006754834d4a14a058b1a53b933 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Experiment 6 2.1 Deposition system 6 2.2 Deposition Procedures 8 2.3 Focus Ion Beam Process 9 2.4 Measurement Techniques 9 2.4.1 Current – Voltage characteristics 9 2.4.2 Thickness Measurement of Metal Conducting Pads 10 2.4.3 Image of Silicon Nanowires 10 Chapter 3 The Doping Concentration of Electric-Field-Directed Growth of p-type and n-type Silicon Nanowires 11 3.1 Vapor-Liquid-Solid (VLS) Mechanism 12 3.1.1 VLS- assisted silicon nanowire growth 13 3.1.2 The role of the metal catalyst 18 3.2 Electric-Field-Directed Growth of Silicon Nanowires 20 3.3 Experimental Process 22 3.4 Results and discussion 30 3.4.1 The growth of p-type SiNW 30 3.4.2 The growth of n-type SiNW 31 3.4.3 Local-Induced-Electric-Field Directed Growth 33 3.4.4 Resistivity and Doping Concentratin of p-type SiNW 36 3.4.5 Resistivity and Doping Concentratin of n-type SiNW 44 Chapter 4 Frequency tuning silicon nanowire resonator by external bending force 45 4.1 Position SiNWs by Dielectrophoresis 45 4.2 Experimental Process 49 4.3 Electrical Actuation Method 57 4.4 Natural frequency of SiNW resonator 60 4.5 Frequency tunable SiNW resonator by applying external bending force 63 Chapter 5 Conclusions 67 References 69 Appendix 75 (A) Binary phase diagram of Ag-Si alloy 75 (B) Binary phase diagram of Fe-Si alloy 75 (C) Binary phase diagram of Al-Si alloy. 76 (D) Binary phase diagram of Al-Ge alloy. 76 | |
dc.language.iso | en | |
dc.title | 矽奈米線基礎電性研究及藉外部彎曲應力調變矽奈米線振盪器之共振頻率 | zh_TW |
dc.title | Electrical Property of p and n-type SiNW and Frequency Tunable SiNW Resonator by External Bending Force | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂學士,林浩雄 | |
dc.subject.keyword | 矽奈米線,振盪器, | zh_TW |
dc.subject.keyword | silicon nanowire,resonator, | en |
dc.relation.page | 76 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-01-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。