Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李銘仁(Min-Jen Lee)
dc.contributor.authorYing-Ju Chenen
dc.contributor.author陳盈如zh_TW
dc.date.accessioned2021-06-08T05:00:02Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation1. Swash, M. and J. Desai, Motor neuron disease: classification and nomenclature. Amyotroph Lateral Scler Other Motor Neuron Disord, 2000. 1(2): p. 105-12.
2. Rowland, L.P., How amyotrophic lateral sclerosis got its name: the clinical-pathologic genius of Jean-Martin Charcot. Arch Neurol, 2001. 58(3): p. 512-5.
3. Rowland, L.P. and N.A. Shneider, Amyotrophic lateral sclerosis. N Engl J Med, 2001. 344(22): p. 1688-700.
4. 羅榮昇, 運動神經元疾病. 當代醫學, 2000. 27(6): p. 492-496.
5. Worms, P.M., The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci, 2001. 191(1-2): p. 3-9.
6. Wijesekera, L.C. and P.N. Leigh, Amyotrophic lateral sclerosis. Orphanet J Rare Dis, 2009. 4: p. 3.
7. Armon, C. (2003) Epidemiology of Amyotrophic Lateral Sclerosis/Motor Neuron Disease. Motor Neuron Disorders, 167-206.
8. Logroscino, G., et al., Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry, 2010. 81(4): p. 385-90.
9. Wolfson, C., et al., Incidence and prevalence of amyotrophic lateral sclerosis in Canada: a systematic review of the literature. Neuroepidemiology, 2009. 33(2): p. 79-88.
10. Kihira, T., et al., Changes in the incidence of amyotrophic lateral sclerosis in Wakayama, Japan. Amyotroph Lateral Scler Other Motor Neuron Disord, 2005. 6(3): p. 155-63.
11. Waring, S.C., et al., Incidence of amyotrophic lateral sclerosis and of the parkinsonism-dementia complex of Guam, 1950-1989. Neuroepidemiology, 2004. 23(4): p. 192-200.
12. 邱浩彰, 運動神經元疾病之新進展. 台灣醫學, 2001. 5(2): p. 228-232.
13. 黃威詔, 應用全民健保資料庫分析臺灣的運動神經元疾病之醫療利用和支出: 重大傷病證明資料檔分析之經驗, in 碩士論文. 2008, 國立陽明大學 醫務管理研究所: 台灣.
14. Kuhnlein, P., et al., Diagnosis and treatment of bulbar symptoms in amyotrophic lateral sclerosis. Nat Clin Pract Neurol, 2008. 4(7): p. 366-74.
15. 楊智超 and 謝松蒼, 肌萎縮側索硬化症. 當代醫學, 2000. 27(5): p. 386-389.
16. Brooks, B.R., et al., El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord, 2000. 1(5): p. 293-9.
17. Brooks, B.R., El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial 'Clinical limits of amyotrophic lateral sclerosis' workshop contributors. J Neurol Sci, 1994. 124 Suppl: p. 96-107.
18. Amato, A.A. and J.A. Russell, Amyotrophic Lateral Sclerosis, in Neuromuscular Disorders. 2008, Mc Graw Hill Medical. p. 97-113.
19. Pasinelli, P. and R.H. Brown, Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci, 2006. 7(9): p. 710-23.
20. Shaw, C.E., et al., Mutations in all five exons of SOD-1 may cause ALS. Ann Neurol, 1998. 43(3): p. 390-4.
21. Rosen, D.R., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993. 362(6415): p. 59-62.
22. Barber, S.C. and P.J. Shaw, Chapter 4 Molecular mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis. Handb Clin Neurol, 2007. 82: p. 57-87.
23. Rothstein, J.D., Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol, 2009. 65 Suppl 1: p. S3-9.
24. Shaw, P.J., Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry, 2005. 76(8): p. 1046-57.
25. Bruijn, L.I., et al., ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron, 1997. 18(2): p. 327-38.
26. Wong, P.C., et al., An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 1995. 14(6): p. 1105-16.
27. Gurney, M.E., et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 1994. 264(5166): p. 1772-5.
28. Dion, P.A., H. Daoud, and G.A. Rouleau, Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet, 2009. 10(11): p. 769-82.
29. Sreedharan, J., et al., TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 2008. 319(5870): p. 1668-72.
30. Mackenzie, I.R., et al., Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol, 2007. 61(5): p. 427-34.
31. Arai, T., et al., TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun, 2006. 351(3): p. 602-11.
32. Neumann, M., et al., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006. 314(5796): p. 130-3.
33. Daoud, H., et al., Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet, 2009. 46(2): p. 112-4.
34. Wiedau-Pazos, M., et al., Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science, 1996. 271(5248): p. 515-8.
35. Beckman, J.S., et al., ALS, SOD and peroxynitrite. Nature, 1993. 364(6438): p. 584.
36. Rothstein, J.D., et al., Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol, 1990. 28(1): p. 18-25.
37. Spreux-Varoquaux, O., et al., Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci, 2002. 193(2): p. 73-8.
38. Rothstein, J.D., L.J. Martin, and R.W. Kuncl, Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med, 1992. 326(22): p. 1464-8.
39. Rothstein, J.D., et al., Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol, 1995. 38(1): p. 73-84.
40. Rothstein, J.D., et al., Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron, 1996. 16(3): p. 675-86.
41. Trotti, D., et al., SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci, 1999. 2(9): p. 848.
42. Howland, D.S., et al., Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A, 2002. 99(3): p. 1604-9.
43. Guo, H., et al., Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet, 2003. 12(19): p. 2519-32.
44. Bensimon, G., L. Lacomblez, and V. Meininger, A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med, 1994. 330(9): p. 585-91.
45. Gurney, M.E., et al., Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol, 1996. 39(2): p. 147-57.
46. Eisen, A., et al., Anti-glutamate therapy in amyotrophic lateral sclerosis: a trial using lamotrigine. Can J Neurol Sci, 1993. 20(4): p. 297-301.
47. Ryberg, H., H. Askmark, and L.I. Persson, A double-blind randomized clinical trial in amyotrophic lateral sclerosis using lamotrigine: effects on CSF glutamate, aspartate, branched-chain amino acid levels and clinical parameters. Acta Neurol Scand, 2003. 108(1): p. 1-8.
48. Cozzolino, M., A. Ferri, and M.T. Carri, Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal, 2008. 10(3): p. 405-43.
49. Bendotti, C., et al., Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity. J Neurol Sci, 2001. 191(1-2): p. 25-33.
50. Rizzardini, M., et al., Neurodegeneration induced by complex I inhibition in a cellular model of familial amyotrophic lateral sclerosis. Brain Res Bull, 2006. 69(4): p. 465-74.
51. Menzies, F.M., et al., Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain, 2002. 125(Pt 7): p. 1522-33.
52. Jung, C., C.M. Higgins, and Z. Xu, Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem, 2002. 83(3): p. 535-45.
53. Klivenyi, P., et al., Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med, 1999. 5(3): p. 347-50.
54. Bruijn, L.I., et al., Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science, 1998. 281(5384): p. 1851-4.
55. Bruening, W., et al., Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem, 1999. 72(2): p. 693-9.
56. Niwa, J., et al., Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J Biol Chem, 2002. 277(39): p. 36793-8.
57. Williamson, T.L. and D.W. Cleveland, Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci, 1999. 2(1): p. 50-6.
58. Zhang, B., et al., Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol, 1997. 139(5): p. 1307-15.
59. Lee, M.K., J.R. Marszalek, and D.W. Cleveland, A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 1994. 13(4): p. 975-88.
60. Xu, Z., et al., Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell, 1993. 73(1): p. 23-33.
61. Oosthuyse, B., et al., Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet, 2001. 28(2): p. 131-8.
62. Lambrechts, D., et al., VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet, 2003. 34(4): p. 383-94.
63. Wang, Y., et al., Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci, 2007. 27(2): p. 304-7.
64. Storkebaum, E., et al., Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci, 2005. 8(1): p. 85-92.
65. Julien, J.P., ALS: astrocytes move in as deadly neighbors. Nat Neurosci, 2007. 10(5): p. 535-7.
66. Johnson, F.O. and W.D. Atchison, The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology, 2009. 30(5): p. 761-5.
67. Barber, T.E., Inorganic mercury intoxication reminiscent of amyotrophic lateral sclerosis. J Occup Med, 1978. 20(10): p. 667-9.
68. Adams, C.R., D.K. Ziegler, and J.T. Lin, Mercury intoxication simulating amyotrophic lateral sclerosis. JAMA, 1983. 250(5): p. 642-3.
69. Gresham, L.S., et al., Amyotrophic lateral sclerosis and occupational heavy metal exposure: a case-control study. Neuroepidemiology, 1986. 5(1): p. 29-38.
70. Bergomi, M., et al., Environmental exposure to trace elements and risk of amyotrophic lateral sclerosis: a population-based case-control study. Environ Res, 2002. 89(2): p. 116-23.
71. http://alsod.iop.kcl.ac.uk/, ALS ONLINE GENETICS DATABASE.
72. Al-Chalabi, A., et al., Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. Hum Mol Genet, 1998. 7(13): p. 2045-50.
73. Kabashi, E., et al., TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet, 2008. 40(5): p. 572-4.
74. Vance, C., et al., Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science, 2009. 323(5918): p. 1208-11.
75. Kwiatkowski, T.J., Jr., et al., Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 2009. 323(5918): p. 1205-8.
76. Lai, S.L., et al., FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 2010.
77. Zinszner, H., et al., TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci, 1997. 110 ( Pt 15): p. 1741-50.
78. Yang, L., et al., Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing. J Biol Chem, 1998. 273(43): p. 27761-4.
79. Wang, X., et al., Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature, 2008. 454(7200): p. 126-30.
80. Fujii, R., et al., The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol, 2005. 15(6): p. 587-93.
81. Greenway, M.J., et al., ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nat Genet, 2006. 38(4): p. 411-3.
82. Sebastia, J., et al., Angiogenin protects motoneurons against hypoxic injury. Cell Death Differ, 2009. 16(9): p. 1238-47.
83. Miller, R.G., et al., Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev, 2007(1): p. CD001447.
84. Lacomblez, L., et al., Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet, 1996. 347(9013): p. 1425-31.
85. Debove, C., et al., The Rilutek (riluzole) Global Early Access Programme: an open-label safety evaluation in the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord, 2001. 2(3): p. 153-8.
86. Wittwer, C.T., et al., High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem, 2003. 49(6 Pt 1): p. 853-60.
87. Zhou, L., et al., High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin Chem, 2005. 51(10): p. 1770-7.
88. Vossen, R.H., et al., High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat, 2009. 30(6): p. 860-6.
89. Taylor, C.F., Mutation scanning using high-resolution melting. Biochem Soc Trans, 2009. 37(Pt 2): p. 433-7.
90. Tsai, C.P., et al., FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol Aging, 2010. (Article in Press)
91. Li, T.M., E. Alberman, and M. Swash, Comparison of sporadic and familial disease amongst 580 cases of motor neuron disease. J Neurol Neurosurg Psychiatry, 1988. 51(6): p. 778-84.
92. Urushitani, M., et al., Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem, 2002. 83(5): p. 1030-42.
93. Corrado, L., et al., High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum Mutat, 2009. 30(4): p. 688-94.
94. Ticozzi, N., et al., Mutational analysis of TARDBP in neurodegenerative diseases. Neurobiol Aging, 2009.
95. Corrado, L., et al., Mutations of FUS gene in sporadic amyotrophic lateral sclerosis. J Med Genet, 2010. 47(3): p. 190-4.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23372-
dc.description.abstract肌萎縮性脊髓側索硬化症(Amyotrophic lateral sclerosis, ALS) 是最常見一種的運動神經元疾病,疾病特徵是漸進性的上、下運動神經元退化。臨床上,疾病病程進展快速,患者常在發病後的2-5年間發展為呼吸衰竭。家族遺傳型ALS約僅佔ALS中的10%,並且發生年齡較輕 (<55歲)。致病基因以及基因突變率,依序為SOD1基因(20%),TARDBP基因(2~5%),FUS基因(4%),ANG基因則更為罕見。 在本研究中,我們將針對台灣ALS患者(年輕發病及家族型ALS),進行基因突變率篩檢。總共納入46位患者,其中4位有家族病史,平均發病年齡介於43歲~48歲間。
  4個ALS的致病基因被選為進行突變檢測。為鑑別出heteroduplex,將高分辨率熔解曲線分析 (high resolution melting curve, HRM) 應用於本研究中。HRM實驗中的heteroduplex序列變異,被選出進行定序。由於SOD1基因及ANG基因的轉譯範圍較小,則直接進行定序實驗。實驗結果顯示,有2個SOD1 (p.G85R與p.T136R),1個TARDBP (p.M337V)的missense mutation,以及TARDBP 5’UTR -61C>G和2個FUS (p.G49G與p.T97T)的silence mutation。未發現有ANG基因的突變。帶有基因突變的患者,大約在35歲以及43歲開始出現症狀,症狀進展快速併有早期的呼吸衰竭。在台灣的SOD1突變率,家族型ALS約佔25%,散發型ALS案例約為3%,數據與先前在高加索人所發現數據相似。TARDBP突變率在家族型ALS為25%,與台灣研究團隊的研究資料數據較為相近。
  總結本次研究,突變率在散發型ALS並不高,而SOD1仍為家族型ALS最常見的致病基因。 在近期發現的ALS致病基因,如TARDBP、FUS以及ANG的突變並不常見。帶有基因缺損的病患為年輕型發病,快速的漸進性運動神經元退化,及預後不佳。對於此種高損害性的疾病,未來需要再更進一步的釐清其病因機轉。
zh_TW
dc.description.abstractAmyotrophic lateral sclerosis (ALS), characterizing by progressive upper and lower motor neuron degeneration, is one of the most common forms of motor neuron disease. Clinically, it progressed rapidly and patients usually developed respiratory failure 2 to 5 years post the onset. Familial ALS is only 10% of ALS and it usually occurs at young age (<55 years old). The responsible genes and its associated mutation frequency are as follows, SOD1 (20%), TARDBP (2~5%), FUS (4%) and rare in ANG. In this study, we would screen the mutation frequency in a Taiwanese cohort with ALS (both young-onset and familial ALS). In total, we recruited 46 patients; 4 patients have a positive family history and the average age of onset for these patients are between 43 and 48 years old.
 The four responsible genes were selected for mutation detection. To identify a heteroduplex, the high resolution melting curve (HRM) analysis has been employed. A sequence variant resulting in a heteroduplex on the HRM, were subjected to sequencing. Because of the small size of transcript, direct sequencing has been used to identify the mutations in SOD1 and ANG genes. The result reveals 2 SOD1 (p.G85R and p.T136R), one TARDBP (p.M337V) missense mutations, one TARDBP 5’UTR -61 C>G mutations, and two FUS (p.G49G and p.T97T) silence mutations. No mutation was observed in ANG genes. Patients with a mutation develop the symptoms at 35 and 43 years of age. The symptoms progressed rapidly with early respiratory failure. The mutation frequency in the Taiwanese cohort is 25% for the SOD1 in familial ALS, 3% for the SOD1 in sporadic ALS. The data is similar to that found in Caucasian people in previous references. The mutation frequency of TARDBP in familial ALS (25%) is similar to previous references at Taiwan.
 In conclusion, the mutation rate in the sporadic ALS is not high and the SOD1 mutation remains the most common cause for familial ALS. Mutations in the newly identified responsible genes such as TARDBP, FUS and ANG are not common. Patients with a genetic defect developed a young-onset, rapid progressive motor neuron degeneration and a poor outcome. Further investigation is needed to clarify the pathogenic mechanism for this devastating disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:00:02Z (GMT). No. of bitstreams: 1
ntu-99-P96448011-1.pdf: 1666257 bytes, checksum: eaacaa0aa1eda63fbbda621031c7a4bb (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要....................................I
ABSTRACT..................................III
第一章、 序論...............................1
一、 肌萎縮性脊髓側索硬化症簡介.........1
二、 流行病學...........................1
三、 臨床表徵...........................2
四、 疾病診斷...........................3
五、 遺傳模式...........................4
六、 致病機轉...........................5
七、 分子遺傳..........................10
八、 治療方式及預後....................11
九、 研究動機與目的....................12
第二章、 研究方法..........................13
一、 研究對象..........................13
二、 研究方法..........................13
三、 實驗材料與儀器....................14
四、 實驗方法..........................15
第三章、 結果..............................20
第四章、 討論..............................24
第五章、 參考文獻..........................27
dc.language.isozh-TW
dc.subject肌萎縮性脊髓側索硬化症zh_TW
dc.subject運動神經元疾病zh_TW
dc.subject高分辨率熔解曲線分析zh_TW
dc.subjectHRMen
dc.subjectAmyotrophic lateral sclerosisen
dc.subjectALSen
dc.subjectMotor Neuron Diseaseen
dc.title肌萎縮性脊髓側索硬化症之分子基因研究zh_TW
dc.titleMolecular analysis in the Amyotrophic Lateral Sclerosisen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余家利,楊智超
dc.subject.keyword肌萎縮性脊髓側索硬化症,運動神經元疾病,高分辨率熔解曲線分析,zh_TW
dc.subject.keywordAmyotrophic lateral sclerosis,ALS,Motor Neuron Disease,HRM,en
dc.relation.page53
dc.rights.note未授權
dc.date.accepted2010-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved