請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23371完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭貽生(Yi-Sheng Cheng) | |
| dc.contributor.author | Tzu-Yen Kuo | en |
| dc.contributor.author | 郭姿妍 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:00:01Z | - |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | 參考文獻
Alias, Z., and Clark, A.G. (2007). Studies on the glutathione S-transferase proteome of adult Drosophila melanogaster: responsiveness to chemical challenge. Proteomics 7, 3618-3628. Allocati, N., Masulli, M., Casalone, E., Santucci, S., Favaloro, B., Parker, M.W., and Di Ilio, C. (2002). Glutamic acid-65 is an essential residue for catalysis in Proteus mirabilis glutathione S-transferase B1-1. Biochem J 363, 189-193. Andrzej, K., Malgorzata, R., Maria, W., and Witold, W. (2007). Heavy metal sorption in the lichen cationactive layer. Bioelectrochemistry 71, 60-65. Antolini, F., Lo Bello, M., and Sette, M. (2003). Purified promyelocytic leukemia coiled-coil aggregates as a tetramer displaying low alpha-helical content. Protein Expr Purif 29, 94-102. Axarli, I., Dhavala, P., Papageorgiou, A.C., and Labrou, N.E. (2009). Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site. J Mol Biol 385, 984-1002. Banerjee, S., and Goswami, R. GST profile expression study in some selected plants: in silico approach. Mol Cell Biochem 336, 109-126. Board, P.G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L.S., Schulte, G.K., Danley, D.E., Hoth, L.R., Griffor, M.C., Kamath, A.V., Rosner, M.H., Chrunyk, B.A., Perregaux, D.E., Gabel, C.A., Geoghegan, K.F., and Pandit, J. (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem 275, 24798-24806. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. Browse, J. (2005). Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72, 431-456. Browse, J., and Howe, G.A. (2008). New weapons and a rapid response against insect attack. Plant Physiol 146, 832-838. Carson, M. (1997). Ribbons. Methods Enzymol 277, 493-505. Chen, I.C., Huang, I.C., Liu, M.J., Wang, Z.G., Chung, S.S., and Hsieh, H.L. (2007). Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol 143, 1189-1202. Chen, M., Chory, J., and Fankhauser, C. (2004). Light signal transduction in higher plants. Annu Rev Genet 38, 87-117. Cheng, H., Song, S., Xiao, L., Soo, H.M., Cheng, Z., Xie, D., and Peng, J. (2009). Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5, e1000440. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-671. Conconi, A., Smerdon, M.J., Howe, G.A., and Ryan, C.A. (1996). The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383, 826-829. Dixon, D.P., Lapthorn, A., and Edwards, R. (2002). Plant glutathione transferases. Genome Biol 3, REVIEWS3004. Edwards, R., and Dixon, D.P. (2005). Plant glutathione transferases. Methods Enzymol 401, 169-186. Edwards, R., Dixon, D.P., and Walbot, V. (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5, 193-198. Fankhauser, C., and Chory, J. (1997). Light control of plant development. Annu Rev Cell Dev Biol 13, 203-229. Farmer, E.E., Johnson, R.R., and Ryan, C.A. (1992). Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic Acid. Plant Physiol 98, 995-1002. Foo, E., Ross, J.J., Davies, N.W., Reid, J.B., and Weller, J.L. (2006). A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J 46, 911-921. Frova, C. (2006). Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23, 149-169. Furuya, M., and Torrey, J.G. (1964). The Reversible Inhibition by Red and Far-Red Light of Auxin-Induced Lateral Root Initiation in Isolated Pea Roots. Plant Physiol 39, 987-991. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43, 205-227. Gouet, P., Courcelle, E., Stuart, D.I., and Metoz, F. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308. Gyula, P., Schafer, E., and Nagy, F. (2003). Light perception and signalling in higher plants. Curr Opin Plant Biol 6, 446-452. Hagen, G., Martin, G., Li, Y., and Guilfoyle, T.J. (1991). Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17, 567-579. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98. Ho, S.S., Cheng, Y.S. (2009). Purification, crystallization and biochemical assay of FIN219 and the complex of FIN219-FIP1. Howe, G.A., and Jander, G. (2008). Plant immunity to insect herbivores. Annu Rev Plant Biol 59, 41-66. Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14, 1958-1970. Hudson, M.E. (2000). The genetics of phytochrome signalling in Arabidopsis. Semin Cell Dev Biol 11, 475-483. Ji, X., von Rosenvinge, E.C., Johnson, W.W., Tomarev, S.I., Piatigorsky, J., Armstrong, R.N., and Gilliland, G.L. (1995). Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry 34, 5317-5328. Jiao, Y., Lau, O.S., and Deng, X.W. (2007). Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8, 217-230. Kampranis, S.C., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P.N., and Makris, A.M. (2000). A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem 275, 29207-29216. Kitamura, S., Shikazono, N., and Tanaka, A. (2004). TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37, 104-114. Kramell, R., Miersch, O., Hause, B., Ortel, B., Parthier, B., and Wasternack, C. (1997). Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves. FEBS Lett 414, 197-202. Lamoureux, G.L., Shimabukuro, R.H., Swanson, H.R., and Frear, D.S. (1970). Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised sorghum leaf sections. J Agric Food Chem 18, 81-86. Lorenzo, O., and Solano, R. (2005). Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8, 532-540. Loyall, L., Uchida, K., Braun, S., Furuya, M., and Frohnmeyer, H. (2000). Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12, 1939-1950. Mannervik, B., and Danielson, U.H. (1988). Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem 23, 283-337. McConn, M., and Browse, J. (1996). The Critical Requirement for Linolenic Acid Is Pollen Development, Not Photosynthesis, in an Arabidopsis Mutant. Plant Cell 8, 403-416. McGonigle, B., Keeler, S.J., Lau, S.M., Koeppe, M.K., and O'Keefe, D.P. (2000). A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol 124, 1105-1120. McTigue, M.A., Williams, D.R., and Tainer, J.A. (1995). Crystal structures of a schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J Mol Biol 246, 21-27. Melotto, M., Underwood, W., and He, S.Y. (2008a). Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46, 101-122. Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., Zeng, W., Thines, B., Staswick, P., Browse, J., Howe, G.A., and He, S.Y. (2008b). A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J 55, 979-988. Moon, J., Parry, G., and Estelle, M. (2004). The ubiquitin-proteasome pathway and plant development. Plant Cell 16, 3181-3195. Moons, A. (2005). Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm 72, 155-202. Morelli, G., and Ruberti, I. (2002). Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci 7, 399-404. Moreno, J.E., Tao, Y., Chory, J., and Ballare, C.L. (2009). Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci U S A 106, 4935-4940. Mueller, L.A., Goodman, C.D., Silady, R.A., and Walbot, V. (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123, 1561-1570. Neuefeind, T., Huber, R., Dasenbrock, H., Prade, L., and Bieseler, B. (1997). Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism. J Mol Biol 274, 446-453. Nomura, K., Melotto, M., and He, S.Y. (2005). Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol 8, 361-368. Oakley, A.J. (2005). Glutathione transferases: new functions. Curr Opin Struct Biol 15, 716-723. Reinemer, P., Prade, L., Hof, P., Neuefeind, T., Huber, R., Zettl, R., Palme, K., Schell, J., Koelln, I., Bartunik, H.D., and Bieseler, B. (1996). Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J Mol Biol 255, 289-309. Ren, C., Pan, J., Peng, W., Genschik, P., Hobbie, L., Hellmann, H., Estelle, M., Gao, B., Peng, J., Sun, C., and Xie, D. (2005). Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant J 42, 514-524. Rial, D.V., and Ceccarelli, E.A. (2002). Removal of DnaK contamination during fusion protein purifications. Protein Expr Purif 25, 503-507. Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J., and Benkova, E. (2007). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19, 2197-2212. Schmidt, L., Hummel, G.M., Schottner, M., Schurr, U., and Walter, A. Jasmonic acid does not mediate root growth responses to wounding in Arabidopsis thaliana. Plant Cell Environ 33, 104-116. Schommer, C., Palatnik, J.F., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E.E., Nath, U., and Weigel, D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6, e230. Shan, X., Zhang, Y., Peng, W., Wang, Z., and Xie, D. (2009). Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot 60, 3849-3860. Sinning, I., Kleywegt, G.J., Cowan, S.W., Reinemer, P., Dirr, H.W., Huber, R., Gilliland, G.L., Armstrong, R.N., Ji, X., Board, P.G., and et al. (1993). Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol 232, 192-212. Smith, H. (2000). Phytochromes and light signal perception by plants--an emerging synthesis. Nature 407, 585-591. Staswick, P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117-2127. Staswick, P.E., Su, W., and Howell, S.H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 89, 6837-6840. Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.Y., Dolezal, K., Schlereth, A., Jurgens, G., and Alonso, J.M. (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177-191. Suza, W.P., and Staswick, P.E. (2008). The role of JAR1 in Jasmonoyl-L: -isoleucine production during Arabidopsis wound response. Planta 227, 1221-1232. Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T., Sandberg, G., Bhalerao, R., Ljung, K., and Bennett, M.J. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19, 2186-2196. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661-665. Thom, R., Cummins, I., Dixon, D.P., Edwards, R., Cole, D.J., and Lapthorn, A.J. (2002). Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification. Biochemistry 41, 7008-7020. Ueda, J., and Kato, J. (1980). Isolation and Identification of a Senescence-promoting Substance from Wormwood (Artemisia absinthium L.). Plant Physiol 66, 246-249. Vijayan, P., Shockey, J., Levesque, C.A., Cook, R.J., and Browse, J. (1998). A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci U S A 95, 7209-7214. Wallace, A.C., Laskowski, R.A., and Thornton, J.M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-134. Wasternack, C., and Hause, B. (2002). Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72, 165-221. Wiktelius, E., and Stenberg, G. (2007). Novel class of glutathione transferases from cyanobacteria exhibit high catalytic activities towards naturally occurring isothiocyanates. Biochem J 406, 115-123. Wilce, M.C., and Parker, M.W. (1994). Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205, 1-18. Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., and Xie, D. (2002). The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919-1935. Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., Cheng, Z., Peng, W., Luo, H., Nan, F., Wang, Z., and Xie, D. (2009). The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220-2236. Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., and Farmer, E.E. (2007). A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470-2483. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23371 | - |
| dc.description.abstract | FIN219 (Far-red insensitive 219)又稱為Jasmonate Resistant 1 (JAR1),在光型態發生中扮演重要角色,並且具有將茉莉酸(Jasmonic acid)和Isoleucine (Ile)結合成JA-Ile的酵素活性,FIN219的蛋白質結構和其分子機制至今仍是未知。然而FIP1 (FIN219 Interaction Protein1)具有GST的活性,與FIN219蛋白發生交互作用時可減少FIN219的降解。本實驗中試著將GST-FIN219和FIP1蛋白質進行結晶,並將晶體進行X-ray繞射的分析,但得到的繞射數據並不清晰。由於FIP1是屬於Tau Glutathione S-transferases (GSTs)家族成員之一,並且有許多的Tau GST蛋白質的結構已被解析,這些蛋白質其中之一的fluorodifen-inducible GST (GmGSTU4-4, PDB ID: 2VO4)和FIP1間的胺基酸序列相似性高達64%。利用modeller9v8軟體,進行FIP1蛋白的結構模擬(homology modeling),經由FIP1 model推測FIP1會形成雙體(dimer)的結構,並進一步地分析FIP1和GST間其dimeric interface與活性部位。本實驗利用數種的生化分析方法,如膠體過濾色層分析法(gel filtration chromatography),native PAGE,和glutaraldehyde (GA) cross-linking等實驗,來證實FIP1確實以雙體存在。而先前在純化FIN219的過程中,我們發現到FIP1不只會與FIN219結合亦會和GST發生交互作用,利用GST親和性管柱和pull-down分析的方法,證實了FIP1和GST,FIN219和GST,及FIN219和FIP1,蛋白質和蛋白質間具有交互作用的存在。最後我們使用CDNB分析來檢測FIP1的GST酵素活性,並發現到FIN219和FIP1間的酵素活性是一個協同活性的關係。 | zh_TW |
| dc.description.abstract | FIN219 (Far-red insensitive 219), also known as JAR1 (Jasmonate Resistant 1), plays an important role to mediate photomorphogenesis and possesses the enzymatic activity of conjugating JA to Isoleucine. The overall structure of FIN219 and its molecular mechanism are still unknown. However, a protein with GST activity, named FIP1, has been identified to interact with FIN219 and might reduce the decay of FIN219. Therefore, we tried to crystallize the GST-FIN219 and FIP1 only, and got some crystals of them. From preliminary results, those crystals got poor X-ray diffraction pattern. Since FIP1 is a member of Tau Glutathione-S-Transferases (GSTs), several structures of Tau GSTs have been resolved. One of them, fluorodifen-inducible GST (GmGSTU4-4, PDB ID: 2VO4) shares highly sequence identities (64%) with FIP1. The structural model of FIP1 was built using modeller9v8, a program for homology modeling. Based on the FIP1 model, the dimeric interface and the active site of GST were explored. We also performed several biochemical assays such as the gel-filtration chromatography, the native PAGE and glutaraldehyde (GA) cross-linking experiments to confirm the dimerization of FIP1. From previous purification of FIN219, we found that FIP1 not only interacts with FIN219, but also interacts with GST. Protein-protein interactions between FIP1 and GST, FIN219 and GST, and FIP1 and FIN219 were also performed by GST affinity column, pull-down assay. Finally, the GST activity of FIP1 was tested by CDNB assay, and the relationship of enzymatic activity between FIN219 and FIP1 showed a cooperative activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:00:01Z (GMT). No. of bitstreams: 1 ntu-99-R97b42031-1.pdf: 6526015 bytes, checksum: edf008598f6eb2b7e659178b0ce26ac2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄
目錄 I 中文摘要 III Abstract IV 縮寫對照表 V 前言 1 一、 緒論 1 二、 FIN219 (Far-red insensitive 219)基因 2 三、 茉莉酸 (Jasmonic acid)的訊息傳遞 3 四、 FIP1 (FIN219-interacting protein 1)基因 5 五、 Glutathione S-transferases (GSTS)家族 5 六、 研究目標 6 材料與方法 8 A.實驗材料 8 B.實驗方法 8 一、 勝任細胞 (competent cell)之製備 8 二、 轉形作用 (transformation) 8 三、 抽取DNA質體 9 四、 以發酵槽 (fermentor)大量表現FIN219蛋白 9 五、 以錐形瓶 (flask)大量表現FIP1蛋白 10 六、 GST fused FIN219蛋白之萃取純化 10 七、 His fused FIP1蛋白之萃取純化 11 八、 去除GST fused FIN219蛋白上之GST 12 九、 FIN219-FIP1 complex純化之前處理 12 十、 FIN219-FIP1 complex之純化 12 十一、 聚丙烯醯胺膠體電泳 (SDS-polyacrylamide gel electrophoresis, SDS- PAGE) 13 十二、 蛋白質濃度定量 14 十三、 FIP1胺基酸序列比對與二級結構預測 14 十四、 FIP1蛋白之結構模擬 14 十五、 膠體過濾色層分析法分離FIP1 dimer 15 十六、 Native-PAGE 15 十七、 Glutaraldehyde (GA) cross-linking分析 15 十八、 FIP 1蛋白與GST親和性管柱的結合能力分析 16 十九、 西方墨點法 (Western blotting) 16 二十、 蛋白交互作用試驗 (Pull-down assay) 17 二十一、 GST酵素活性分析 17 二十二、 晶體篩選與X-ray繞射數據分析 17 結果 19 一、 GST fused FIN219蛋白之表現與純化 19 二、 His fused FIP1蛋白之表現與純化 20 三、 FIN219-FIP1 complex之純化 20 四、 FIP1蛋白雙體之結構模擬 23 五、 利用Gel filtration與Native-PAGE確認FIP1 dimer 24 六、 Glutaraldehyde (GA) cross-linking分析FIP1 dimer 25 七、 FIP 1蛋白會被GST親和性管柱結合 25 八、 Pull-down assay證實GST與FIP 1和FIN219三者間的交互作用 26 九、 FIP1具有GST酵素活性且添加FIN219可增加FIP1的活性 26 十、 晶體篩選與X-ray繞射數據分析 27 討論 29 一、 FIN219蛋白之純化 29 二、 FIP1蛋白結構與胺基酸序列之分析 30 三、 FIP 1蛋白會被GST親和性管柱結合 31 四、 Pull-down assay證實GST與FIP 1和FIN219三者間的交互作用 31 五、 FIP1具有GST酵素活性且添加FIN219可增加FIP1的活性 32 六、 晶體篩選與X-ray繞射數據分析 33 結論 35 圖表 37 參考文獻……………………………………………………………………………….58 附錄 67 附圖 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | GST | zh_TW |
| dc.subject | FIN219 | zh_TW |
| dc.subject | FIP1 | zh_TW |
| dc.title | FIP1之結構模擬與功能性分析及其與FIN219間的協同活性之研究 | zh_TW |
| dc.title | Structural model and functional analysis of FIP1 identified its cooperative activity for FIN219 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝旭亮(Hsu-Liang Hsieh),張英?(Ing-Feng Chang),張世宗(Shih-Chung Chang) | |
| dc.subject.keyword | FIN219,FIP1,GST, | zh_TW |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 6.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
