Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂理平(Lii-Ping Leu)
dc.contributor.authorChia-Fu Yangen
dc.contributor.author楊家福zh_TW
dc.date.accessioned2021-06-08T04:59:44Z-
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citationAdánez, J., L. F. de Diego and P. Gayán, “Transport velocities of coal and sand particles”, Powder Technol., 77, 61-68 (1993).
Afsahi, F. A., R. Sotudeh-Gharebagh and N. Mostoufi, “Clusters identification and characterization in a gas-solid fluidized bed by the wavelet analysis”, Can. J. Chem. Eng., 87, 375-385 (2009).
Baeyens, J. and D. Geldart, “An investigation into slugging fluidized beds”, Chem. Eng. Sci., 55, 255-265 (1974).
Bai, D., Y. Jin and Z. Yu, “Flow regimes in circulating fluidized beds”, Chem. Eng. Technol., 16, 307-313 (1993).
Bai, D. R., Y. Jin, Z. Q. Yu, and J. X. Zhu, “The axial distribution of the cross-sectionally average voidage in fast fluidized beds”, Powder Technol., 71, 51-58 (1992).
Bai, D., E. Shibuya, N. Nakagawa and K. Kato, “Characterization of gas fluidization flow regimes using pressure fluctuations”, Powder Technol., 87, 105-111 (1996).
Balasubramanian, N., C. Srinivasakannan and C. A. Basha, “Transition velocities in the riser of a circulating fluidized bed”, Advanced Powder Technol., 16, 247-260 (2005).
Bi, H. T., N. Ellis, I. A. Abba and J. R. Grace, “A state-of-the-art review of gas-solid turbulent fluidization”, Chem. Eng. Sci., 55, 4789-4825 (2000).
Bi, H. T. and L. S. Fan, “Existence of turbulent regime in gas-solid fluidization”, AIChE J., 38, 297-301 (1992).
Bi, H. T. and P. C. Su, “Local phase holdups in gas-solids fluidization and transport”, AIChE J., 47, 2025-2031 (2001).
Bi, H. T. and J. Zhu, “Static instability analysis of circulating fluidized bed and the concept of high density riser”, AIChE J., 39, 1272-1280 (1993).
Brereton, C. M. H. and J. R. Grace, “The transition to turbulent fluidization”, Chem. Eng. Res. Design, 70, 246-251 (1992).
Bruce, A. and H. Y. Gao, “Applied Wavelet Analysis with S-PLUS”, pp. 11-67, Springer, New York, NY, U. S. A. (1996).
Canada, G. S. and M. H. McLaughlin, “Large particle fluidization and heat transfer a high pressure”, AIChE Symp. Ser., 74 (174), 27-37 (1978).
Chehbouni, A., J. Chaouki, C. Guy and D. Klvana, “Characterization of the flow transition between bubbling and turbulent fluidization”, Ind. Eng. Chem. Res., 33, 1889-1896 (1994).
Chen, H., H. Li and M. Kwauk, “Two-phase structure in a high-density downer”, Powder Technol., 158, 115-123 (2005).
Chyang, C. S. and W. C. Huang, “Characteristics of large particle fluidization”, J. Chinese Inst. Chem. Eng., 19, 81-89 (1988).
Cui, H., N. Mostoufi and J. Chaouki, “Characterization of dynamic gas solid distribution in fluidized Beds”, Chem. Eng. J., 79, 135-143 (2000).
Das, M., A. Bandyopadhyay, B. C. Meikap, R. K. Saha, “Axial voidage profiles and identification of flow regimes in the riser of a circulating fluidized bed”, Chem. Eng. J., 145, 249-258 (2008 a).
Das, M., B. C. Meikap and R. K. Saha, “Prediction of cluster diameter for a wide range of particles for gas-solid dispersed phase in a fast fluidized-bed reactor”, Asia-Pac. J. Chem. Eng., 3, 223-229 (2008 b).
Daubechies, I., “Orthonormal basis of compactly supported wavelets”, Comm. Pure & Applied Math., 41, 909-996 (1988).
Ellis, N., L. A. Briens, J. R. Grace, H. T. Bi and C. J. Lim, “Characterization of dynamic behaviour in gas-solid turbulent fluidized bed using chaos and wavelet analysis”, Chem. Eng. J., 96, 105-116 (2003).
Geldart, D., “Types of gas fluidization”, Powder Technol., 7, 285-292 (1973).
Goswami, J. C. and A. K. Chan, “Fundamentals of wavelets: theory, algorithms, and applications”, pp. 141-265, John Wiley & Sons, New York, NY, U. S. A. (1999).
Grossmann, A., J. Morlet and T. Paul, “Transforms associated to square integrable group representation-I: general results”, Int. J. Math. Phys., 26, 2473-2479 (1985).
Guenther, C. and R. Breault, “Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed”, Powder Technol., 173, 163-173 (2007).
Haider, A., and O. Levenspiel, “Drag coefficient and terminal velocity of spherical and nonspherical particles”, Powder Technol., 58, 63-70 (1989).
Harris, A. T., J. F. Davidson and R. B. Thorpe, “The prediction of particle cluster properties in the near wall region of a vertical riser”, Powder Technol., 127, 128-143 (2002).
Hartage, E. U., D. Rensner and J. Werther, “Solids concentration and velocity patterns in circulating fluidized beds”, in “Circulating fluidized bed technology II ”, in P. Basu and J. F. Large, eds., pp. 286-297, Pergamon Press, Toronto, Canada (1988).
Hatano, H., and N. Kido, “Microscope visualization of solid particles in circulating fluidized beds”, Powder Technol., 78, 115-119 (1994).
Herb, B., S. Dou, K. Tuzla and J. C. Chen, “Solid mass fluxes in circulating fluidized beds”, Powder Technol., 70, 197-205 (1992).
Herbert, P. M., T. A. Gauthier, C. L. Briens and M. A. Bergougnou, “Application of fiber optic reflection probes to the measurement of local particle velocity and concentration in gas-solid flow”, Powder Technol., 80, 243-252 (1994).
Horio, M., H. Ishill and M. Nishimuro, “On the nature of turbulent and fast fluidized beds”, Powder Technol., 70, 239-246 (1992).
Horio, M. and H. Kuroki, “Three-dimensional flow visualization of dilutely dispersed solids in bubbling and circulating fluidized beds”, Chem. Eng. Sci., 49, 2413-2421 (1994).
Horio, M., K. Morishita, O. Tachibana and N. Murata, “Solid distribution and movement in circulating fluidized bed”, in “Circulating Fluidized Bed Technology II”, P. Basu and J. F. Large, eds., pp. 147-154, Pergamon Press, Toronto, Canada (1988).
Hu, N., H. Zhang, H. Yang, S. Yang, H. Yue, J. Lu and Q. Liu, “Effects of riser height and total solids inventory on the gas-solids in an ultra-tall CFB riser”, Powder Technol., 196, 8-13 (2009).
Ishida, M. and H. Tanaka, “An optical probe to detect both bubbles and suspended particles in a three-phase fluidized bed”, J. Chem. Eng. Japan, 15, 389-391 (1982).
Jiang, P., P. Cai and L. S. Fan, “transient flow bevavior in fast fluidization”, in “Circulating fluidization bed technology IV”, A. A. Avidan, ed., American Institute of Chemical Engineers, New York , NY, U. S. A. (1994).
Johnsson, H. and F. Johnsson, “Measurements of local solids volume-fraction in fluidized bed boilers”, Powder Technol., 115, 13-26 (2001).
Karagiannis, T., M. Faloutsos and R. Riedi, “Long-Range Dependence: Now you see it now you don’t”, Proceedings GLOBECOM, pp. 2165-2169, Taipei, Taiwan (2002).
Knowlton, T. M., “Solid transfer in fluidized systems”, in “Gas Fluidization Technology”, D. Geldart, ed., pp. 341-414, Wiley, New York, NY, U. S. A. (1986).
Knowlton, T. M. and I. Hirsan, “L-valves characterized for solids flow”, Hydrocarbon Processing, 57, 149-156 (1978).
Kruse, M. and J. Werther, “2D gas and solids flow prediction in circulating fluidized beds based on suction probe and pressure profile measurements”, Chem. Eng. Process., 34, 185-203 (1995).
Kuroki, H. and M. Horio, “The flow structure of a three-dimensional circulating fluidized bed observed by the laser sheet technique”, in “Circulating Fluidized Bed Technology IV”, A. A. Avidan, ed. , pp. 77-84, American Institute of Chemical Engineers, New York , NY, U. S. A. (1994).
Lackermeier, U., J. W. Rudnick, A. Bredebusch and H. Burkhardt, “Visualization of flow structures inside a circulating fluidized bed by means of laser sheet and image processing”, Powder Technol., 114, 71-83 (2001).
Leung, L. S. and R. J. Wiles, “A quantitative design procedure for vertical pneumatic conveying systems”, Ind. Eng. Chem. Proc. Des. Dev., 15, 552-557 (1976).
Li, J., Y. Tung and M. Kwauk, “Axial voidage profile of fluidized beds in different operating regions”, in “Circulating Fluidized Bed Technology II”, P. Basu and L. F. Large, eds., pp. 193-203, Pergamon Press, Toronto, Canada (1988).
Li, H., Y. Xia, Y. Tung and M. Kwauk, “Micro-visualization of clusters in a fast fluidized bed”, Powder Technol., 66, 231-235 (1991).
Li, J., X. Zhang, J. Zhu and J. Li, “Effect of cluster behavior on gas-solid mass transfer in circulating fluidized beds”, in “Fluidization IX”, L. S. Fan and T. M. Knowlton, eds., pp. 405-412, Engineering Foundation, New York, NY, U. S. A. (1998).
Lim, K. S., J. X. Zhu, and J. R. Grace, “Hydrodynamic of gas-solid fluidization”, Int. J. Multiphase Flow, 21, 141-193 (1995).
Lin, Q., F. Wei and Y. Jin, “transient density signal analysis and two-phase microstructure flow in gas-solid fluidization”, Chem. Eng. Sci., 56, 2179-2189 (2001).
Lints, M. C. and L. R. Glicksman, “The structure of particle clusters near the wall of a circulating fluidized bed”, AIChE Symp. Ser., 89 (296), 35-52 (1993).
Liu, X.H., S. Q. Gao and J. H. Li, “Characterizing particle clustering behavior by PDPA measurement for dilute gas-solid flow”, Chem. Eng. J., 108, 193-202 (2005).
Lu, X. and H. Li, “Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed”, Chem. Eng. J., 75, 113-119 (1999).
Lu, X., S. Li, L. Du, J. Yao, W. Lin and H. Li, “Flow structures in the downer circulating fluidized bed”, Chem. Eng. J., 112, 23-31 (2005).
Mainland, M. E. and J. R. Welty, “Use of optical probes to characterize bubble
behavior in gas-solid fluidized beds”, AIChE J., 41, 223-228 (1995).
Mallat, S., “A theory for multiresolution signal decomposition: the wavelet representation”, IEEE Trans. Pattern Analysis and Machine Intelligence, 11, 674-693 (1989).
Mallat, S., “A wavelet tour of signal processing”, 2nd edition, pp. 163-314, Cambridge University Press, Cambridge, U. K. (1999).
Manyele, S. V., J. H. Pärssinen and J. –X. Zhu, “Characterizing particle aggregates in a high-density and high-flux CFB riser”, Chem. Eng. J., 88, 151-161 (2002).
Mastellone, M. L. and U. Arena, “The effect of particle size and density on solid distribution alone the riser of a circulating fluidized bed”, Chem. Eng. Sci., 54, 5383-5391 (1999).
Monazam, E. R. and L. J. Shadle, “A transient method for characterizing flow regimes in a circulating fluid bed”, Powder Technol., 139, 89-97 (2004).
Moran, J. C., and L. R. Glicksman, “Experimental and numerical studies on the gas flow surrounding a single cluster applied to a circulating fluidized bed”, Chem. Eng. Sci., 58, 1879-1886 (2003).
Mori, S., O. Hashimoto, T. Haruta, K. Mochizuki, W. Matsutani, S. Hiraoka, I. Yamada, T. Kojima and K. Tuji, “Turbulent fluidization phenomena”, in “Circulating Fluidized Beds Technology II”, P. Basu and J. F. Large, eds., pp. 105-112, Pergamon Press, Toronto, Canada (1988).
Namkung, W., S. W. Kim and S. D. Kim, “Flow regimes and axial pressure profiles in a circulating fluidized bed”, Chem. Eng. Sci., 72, 245-252 (1999).
Noymer, P. D., and L. R. Glicksman, “Cluster motion and particle-convective heat transfer at the wall of a circulating fluidized bed”, Int. J. Heat Transfer, 41, 147-158 (1998).
Pärssinen, J. H., and J. H. Zhu, “Particle velocity and flow development in a long and high-flux circulating fluidized bed riser”, Chem. Eng. Sci., 56, 5295-5303 (2001).
Perales, J. F., T. Coll, M. F. Llop, L. Puigjaner, J. Arnaldos and J. Casal, “On the transition from bubbling to fast fluidization regimes”, in “Circulating Fluidized Beds Technology III”, P. Basu, M. Horio and M. Hasatani, eds., pp. 73-78, Pergamon Press, Oxford, U. K. (1990).
Ren, J. and J. Li, “Measurement of voidage in fluidized beds by optical probe”, in “Circulating Fluidized Beds Technology”, P. Basu, ed., pp. 105-213, Pergamon Press, Oxford, U. K. (1985).
Ren, J. and J. Li, “Wavelet analysis of dynamic behavior in fluidized beds”, in “Fluidization IX”, L. S. Fan and T. M. Knowlton, eds., pp. 629-636, Engineering Foundation, New York, NY, U. S. A. (1998).
Ren, J., Q. Mao, J. Li and W. Lin, “Wavelet analysis of dynamic behavior in fluidized beds”, Chem. Eng. Sci., 56, 981-988 (2001).
Rhodes, M. J. and D. Geldart, “Transition to turbulence”, in “Fluidization V”, K. Østergaard and A. Sorensen, eds., pp. 281-288, Engineering Foundation, New York, NY, U. S. A. (1986).
Rhodes, M., H. Mineo and T. Hirama, “Particle motion at the wall of a circulating fluidized bed”, Powder Technol., 70, 207-214 (1992).
Rhodes, M. J., M. Sollaart and X. S. Wang, “Flow structure in a fast fluid bed”, Powder Technol., 99, 194-200 (1998).
Rudnick, C. and J. Werther, “The discrimination of cluster characteristics from fiber-optical probesignals in circulating fluidized beds”, in “Fluidization IX”, L. S. Fan and T. M. Knowlton, eds., pp. 573-580, Engineering Frundation, New York, NY, U. S. A. (1998).
Schlichthaerle, P. and J. Werther, “Axial pressure profiles and soilds concentration distributions in the CFB bottom zone”, Chem. Eng. Sci., 54, 5485-5493 (1999).
Schnitzlein, M. G. and H. Weinstein, “Flow characterization in high-velocity fluidized beds using pressure fluctuations”, Chem. Eng. Sci., 43, 2605-2614 (1988).
Sharma, A. K., K. Tuzla, J. Matsen and J. C. Chen, “Parametric effects of particle size and gas velocity on cluster characteristics in fast fluidized beds”, Powder Technol., 111, 114-122 (2000).
Shou, M.C. and L. P. Leu, “Energy of power spectral density function and wavelet analysis of absolute pressure fluctuation measurements in fluidized beds”, Chem. Eng. Res. Design, 83, 478-491 (2005).
Smolders, K. and J. Baeyens, “Gas fluidized beds operating at high velocities: a critical review of occurring regimes”, Powder Technol., 119, 269-291 (2001).
Soong, C. H., K. Tuzla and J. C. Chen, “Identification of particle clusters in circulating fluidized bed”, in “Circulating Fluidized Bed Technology IV”, A. A. Avidan, ed., pp. 615-620, American Institute of Chemical Engineers, New York, NY, U. S. A. (1994).
Takeuchi, H., T. Hirama, T. Chiba, J. Biswas and L. S. Leung, “A quantitative definition and flow regime diagram for fast fluidization”, Powder Technol., 47, 195-199 (1986).
Tuzla, K., A. K. Sharma, J. C. Chen, T. Schiewe, K. E. Witth and O. Molerus, “Transient dynamics of solid concentration in downer fluidized bed”, Powder Technol., 100, 166-172 (1998).
Weinstein, H., M. Meller, M. J. Shao and R. J. Parisi, “The effect of particle density on holdup in a fast fluidized bed”, AIChE Symp. Ser., 80 (234), 52-59 (1984).
Wen, C. H., and Y. H. Yu, “A generalized method for predicting the minimum fluidization velocity”, AIChE J., 12, 610-612 (1966).
Xu, G. and K. Kato, “Hydrodynamic equivalent diameter for clusters in heterogeneous gas-solid flow”, Chem. Eng. Sci., 58, 1837-1847 (1999).
Yang, T. Y. and L. P. Leu, “Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed”, AIChE J., 55, 612-629 (2009).
Yang, T.Y. and L. P. Leu, “Statistical and wavelet analysis of pressure fluctuations on characterizing the onset of turbulent fluidization”, in “Processings of the Ninth Asian Conference on Fluidized-Bed and Three-Phase Reactors”, L. P. Leu and C. S. Chyang, eds., pp. 37-42, Wanli, Taiwan (2004).
Yang, T. Y. and L. P. Leu, “Study of transition velocities from bubbling to turbulent fluidization by statistic and wavelet multi-resolution analysis on absolute pressure fluctuations”, Chem. Eng. Sci., 63, 1950-1970 (2008).
Yerushalmi, J. and N. T. Cankurt, “Further studies of the regimes of fluidization”, Powder Technol., 24, 187-205 (1979).
Yerushalmi, J., N. T. Cankurt, D. Geldart and B. Liss, “Flow regimes in vertical gas-solid contact systems”, AIChE Symp. Ser., 174 (176), 1-12 (1978).
Zhang, H., P. M. Johnston, J. X. Zhu, H. I. de Lasa and M. A. Bergougnou, “A novel calibration procedure for a fiber optic solids concentration probe”, Powder Technol., 100, 260-272 (1998).
Zhou, H., J. Lu and L. Lin, “Turbulence structure of the solid phase in transition region of a circulating fluidized bed”, Chem. Eng. Sci., 55, 839-847 (2000).
Zhu, H. and J. Zhu, “Characterization of fluidization behavior in the bottom region of CFB risers”, Chem. Eng. J., 141, 169-179 (2008).
Zhu, H., J. Zhu, G. Li and F. Li, “Detailed measurement of flow structure inside a dense gas-solids fluidized bed”, Powder Technol., 180, 339-349 (2008).
Zou, B., H. Li, Y. Xia and X. Ma, “Cluster structure in a circulating fluidized bed”, Powder Technol., 78, 173-178 (1994).
陳靖良 (Chen Jing Liang), “循環流體化床中氣固流動現象及床-壁間熱傳導之研究”, 國立台灣大學化學工程研究所博士論文, 台北, 台灣 (1991)。
郭信奇 (Guo Sin Chi), “利用小波分析壓力擾動訊號界定B類粒子快速流體化流域”, 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2006)。
胡琦 (Hu Chi), “利用壓力擾動訊號來界定B類粒子快速流體化流域”, 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2005)。
楊東昱 (Yang Tung Yu), “循環式流體化床中氣固流力行為之小波分析”, 國立台灣大學化學工程研究所博士論文, 台北, 台灣 (2008)。
蕭明昌 (Shio Ming Chang), “移轉速度的存在性及其對紊流流化床流態行為之研究”, 國立台灣大學化學工程研究所博士論文, 台北, 台灣 (2004)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23358-
dc.description.abstract本實驗以平均粒徑200μm、密度2478 kg/m3之Geldart B群之玻璃珠為床質粒子。所使用之設備為高7 m內徑0.108 m之循環式流體化床(circulating fluidized bed, 簡稱CFB)。首先,以床空法(bed empty method)與外插法(extrapolation)界定出CFB中區分紊流流體化(turbulent fluidization)與快速流體化(fast fluidization)之輸送速度(transport velocity) Utr。
於快速流體化下,以壓力探針量測CFB之上升床內各段之軸向平均固體粒子含率。軸向平均固體粒子含率分布隨著表面氣速與粒子循環量的變化而改變。
於快速流體化下,以光纖探針量測CFB之上升床內床底濃相區(bottom dense region)與飛濺區(splash zone)不同徑向位置之固體粒子含率擾動訊號。
利用Yang and Leu (2009)之分析方式,將固體粒子含率擾動訊號以小波多分辨率分析(multi-resolution analysis, MRA)分解成不同尺度(scale)之細波子訊號(detail subsignals)與粗波子訊號(approximation subsignals)。在比較不同尺度之粗波子訊號鑑識Geldart B群粒子之絮狀物(clusters)之差異與所能捕捉原始訊號之能量分率後,吾人認為Yang and Leu (2009)所提出之門檻A11(t)亦適用於Geldart B群粒子。吾人進一步計算出於快速流體化下,不同軸、徑向位置之Geldart B群粒子之絮狀物之流力特性,包含絮狀物之顯現頻率(cluster frequency) fcl、絮狀物顯現時間分率(appearance time fraction of clusters) Fcl、平均絮狀物顯現時間(average cluster duration time)以及絮狀物之平均固體粒子含率(average solids hold-up in clusters)。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T04:59:44Z (GMT). No. of bitstreams: 1
ntu-99-R97524015-1.pdf: 6525562 bytes, checksum: bebe96c2f072d8e0188c9d70aabee402 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XI
1. 緒論 1
1.1 研究背景 1
1.1.1 氣固流體化床之流態變遷 1
1.1.2 絮狀物之研究 4
1.2 研究方法與目的 9
2. 文獻回顧 10
2.1 流體化床流態轉移之界定 10
2.1.1 氣泡流體化至紊流流體化之移轉速度與爭議 10
2.1.2 紊流流體化至快速流體化之輸送速度Utr 11
2.2 不同位置與流態之固體粒子特性 18
2.2.1 軸相固體粒子濃度之分布與估計 18
2.2.2 徑向固體粒子之流力特性 26
2.3 小波分析與訊號處理 27
2.3.1 小波轉換與傅立葉變換之比較 27
2.3.2 小波分析與化工上之應用 30
2.4 固體粒子絮狀物之界定與鑑識 34
3. 實驗裝置與步驟 42
3.1 實驗裝置 42
3.1.1 光纖探針校正系統之細部說明 42
3.1.2 CFB系統之細部說明 47
3.2 固體粒子性質 52
3.3 實驗步驟 52
3.3.1 光纖探針之校正步驟與校正曲線 52
3.3.2 輸送速度之界定步驟 56
3.3.2.1 床空法 56
3.3.2.2 外插法 56
3.3.3 量測CFB之上升床內截面平均固體粒子含率之步驟 58
3.3.4 量測CFB之上升床內固體粒子含率擾動訊號之步驟 58
3.4 固體控制元件之操作 59
3.5 訊號之分析方式 60
3.5.1 小波函數之定義及其特性 60
3.5.2 離散小波轉換(discrete wavelet transform) 61
3.5.3 小波多分辨率分析MRA 62
3.5.4 平均值與機率分布函數PDF分析 63
3.6 絮狀物之流力性質公式 64
4. 結果與討論 66
4.1 紊流流體化至快速流體化之界定 66
4.1.1 床空法 66
4.1.2 外插法 66
4.2 截面平均固體粒子含率之軸向分布 73
4.2.1 表面氣速 對截面平均固體粒子含率 之影響 73
4.2.2 固體粒子循環量 對截面平均固體粒子含率 之影響 73
4.2.3 固體粒子儲槽量 對截面平均固體粒子含率 之影響 76
4.3 CFB內固體粒子含率擾動訊號分析 76
4.3.1 CFB內局部平均固體粒子含率 之徑向分布 78
4.3.2 CFB之上升床床底濃相區之流動結構 78
4.3.3 CFB之上升床內飛濺區之流動結構 81
4.4 小波多分辨率分析MRA 81
4.4.1 固體粒子含率擾動訊號之小波多分辨率分析MRA 81
4.4.2 床底濃相區之小波能量分布(wavelet energy distribution) 86
4.4.3 飛濺區之小波能量分布 88
4.5 選取固體粒子絮狀物之鑑識準則 88
4.5.1 固體粒子絮狀物之鑑識準則與尺度選擇 88
4.5.2 原始固體粒子含率擾動訊號之機率分布函數PDF 92
4.5.3 小波門檻準則與文獻之準則比較 95
4.6 固體粒子絮狀物之流力特性之徑向分布 98
4.6.1 絮狀物顯現時間分率Fcl 98
4.6.2 絮狀物顯現頻率fcl 98
4.6.3 絮狀物平均顯現時間 101
4.6.4 平均絮狀物之固體粒子含率 103
4.7 預測床壁附近絮狀物之性質 103
4.7.1 床壁之絮狀物顯現時間分率Fcl與局部固體粒子含率 之關係 103
4.7.2 平均絮狀物之固體粒子含率 與局部平均固體粒子含率 107
5. 結論 111
符號說明 112
參考文獻 117
附錄 125
附錄A. 壓力變換器之校正 125
附錄B. 小波多分辨率分析之S-PLUS分析程式 126
附錄C. 離散訊號之平均值與PDF之定義與計算 127
附錄D. 實驗數據之擬合 129
附錄E. 不同徑向位置之小波能量分布 132
附錄F. 原始固體粒子擾動訊號 132
附錄G. 絮狀物鑑識應用於床底濃相區 136
附錄H. 原始訊號與其粗波子訊號A11 (t) 138
附錄I. 原始訊號以其平均值加上n倍標準差為門檻值 140
dc.language.isozh-TW
dc.subjectB群粒子zh_TW
dc.subject快速流體化zh_TW
dc.subject小波多分辨率分析zh_TW
dc.subjectfast fluidizationen
dc.subjectGeldart Group B Particlesen
dc.subjectmulti-resolution analysisen
dc.title循環式流體化床中利用小波多分辨率分析鑑識B類粒子絮狀物與絮狀物流力行為之探討zh_TW
dc.titleWavelet Multi-resolution Analysis on Identification and Dynamics of Clusters in a Circulating Fluidized Bed with Geldart Group B Particlesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭明昌,王榮基(Rong-Chi Wang)
dc.subject.keyword快速流體化,小波多分辨率分析,B群粒子,zh_TW
dc.subject.keywordfast fluidization,multi-resolution analysis,Geldart Group B Particles,en
dc.relation.page141
dc.rights.note未授權
dc.date.accepted2010-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
6.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved