Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23331
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜宜殷(Yi-Yin Do)
dc.contributor.authorWei-Chun Chenen
dc.contributor.author陳韋竣zh_TW
dc.date.accessioned2021-06-08T04:59:18Z-
dc.date.copyright2011-09-15
dc.date.issued2011
dc.date.submitted2011-08-18
dc.identifier.citation1. 李宜龍. 2008. 苦瓜與蝴蝶蘭 EIN3 同源基因之選殖與分析. 臺灣大學園藝系碩士論文.
2. 郭純德. 1987. 苦瓜果實採收成熟度與採收後生理之研究. 臺灣大學園藝系碩士論文.
3. 蔡幸君. 2004. 四種園藝作物 EIN3 同源 cDNA 之選殖與分析. 臺灣大學園藝系碩士論文.
4. Alexander, L. and D. Grierson. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53:2039-2055.
5. An, F., Q. Zhao, Y. Ji, W. Li, Z. Jiang, X. Yu, C. Zhang, Y. Han, W. He, Y. He, Y. Liu, S. Zhang, J. R. Ecker, and H. Guo. 2010. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384-2401.
6. Barry, C. S., R. P. McQuinn, A. J. Thompson, G. B. Seymour, D. Grierson, and J. J. Giovannoni. 2005. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomoto. Plant Physiol. 138:267-275.
7. Barry, C. S. and J. J. Giovannoni. 2006. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc. Natl. Acad. Sci. USA 103:7923-7928.
8. Barry, C. S. and J. J. Giovannoni. 2007. Ethylene and fruit ripening. J. Plant Growth Regul. 26:143-159.
9. Binder, B. M., L. A. Mortimore, A. N. Stepanova, J. R. Ecker, and A.B. Bleecker. 2004. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiol. 136:2921-2927.
10. Binder, B. M., J. M. Walker, J. M. Gagne, T. J. Emborg, G. Hemmann, A. B. Bleecker, and R. D. Vierstra. 2007. The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509-523.
11. Bisson, M. M. A., A. Bleckmann, S. Allekotte, and G. Groth. 2009. EIN2, the central regulatorof ethylene signaling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem. J. 424:1-6.
12. Bovy, A. G., G. C. Angenent, H. J. H. Dons, and A. C. van Altvorst. 1999. Hetrologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol. Breed. 5:301-308.
13. Caruso, M., G. Distefano, X. Ye, S. L. Malfa, A. Gentile, E. Tribulato, and M. L. Roose. 2008. Generation of expressed sequence tags from carob (Ceratonia siliqua L.) flowers for gene identification and marker development. Tree Genet. Genomes 4:869-879.
14. Chao, Q., M. Rothenberg, R. Solano, G. Roman, W. Terzaghi, and J. R. Ecker. 1997.Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133-1144.
15. Chen, G., L. Alexander, and G. Donald. 2004. Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. J. Exp. Bot. 55:1491-1497.
16. Chung, B. Y., C. Simons, A. E. Firth, C. M. Brown, and R. P. Hellens. 2006. Effect of 5’UTR introns on gene expression in Arabidopsis thaliana. EMC Genomics 7:120.
17. De la Torre, F., M. del Carmen Rodríguez-Gacio, and A. J. Matilla. 2006. How ethylene works in the reproductive organs of higer plants. Plant Signal Behav. 1:231-242.
18. Dong, C. H., M. Rivarola, J. S. Resnick, B. D. Maggin, and C. Chang. 2008. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J. 53:275-286.
19. Fu, Z., H. Wang, J. Liu, J. Liu, J. Wang, Z. Zhang, and Y. Yu. 2010. Cloning and characterizationof a DCEIN2 gene responsive to ethylene and sucrose in cut flower carnation. Plant Cell Tissue Organ. Cult. 105:447-455.
20. Fu, D. Q., B. Z. Zhu, H. L. Zhu, W. B. Jiang, and Y. B. Luo. 2005. Virus-induced gene silencing in tomato fruit. Plant J. 43:299-308.
21. Grec, S., D. Vanham, J. C. De Ribaucourt, B. Purnelle, and M. Boutry. 2003. Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J. 35:237-250.
22. Giovannoni, J. J. 2007. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 10:283-289.
23. Guiltinan, M. J., W. R. Marcotte Jr., and R. S. Quatrano. 1998. A plant leucine zipper protein that recognizes an abscisic acid response element. Plant Mol. Biol. 37:425-435.
24. Hackett, R. M., C. W. Ho, Z. Lin, H. C. C. Foote, R. G. Fray, and D. Grierson. 2000. Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant consistent with the ethylene receptor-inhibition model. Plant Physiol. 124:1079-1085.
25. Hahn, A. and K. Harter. 2009. Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiol. 149:1207-1210.
26. Hattori, T., T. Terada, and S. Hamasuna. 1995. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J. 7:913-925.
27. Hibi, T., S. Kosugi, T. Iwai, M. Kawata, S. Seo, I. Mitsuhara, and Y. Ohashi. 2007. Involvement of EIN3 homologues in basic PR gene expression and flower development in tobacco plants. J. Exp. Bot. 58:3671-3678.
28. Hoeberichts F. A., W. G. van Doorn, O. Vorst, R. D. Hall, and M. F. van Wordragen. 2007. Sucrose prevents up-regulation of senescence-associated genes in carnation petals. J. Exp. Bot. 58:2873-2885.
29. Hu, W. W., H. Gong, and E. C. Pua. 2005. The pivotal roles of the plant S-Adenosylmethionine decarboxylase 5’ untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiol. 138:276-286.
30. Iordachescu, M. and S. Verlinden. 2005. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. J. Exp. Bot. 56:2011-2018.
31. Jun, S. H., M. J. Han, S. Lee, Y. S. Seo, W. T. Kim, and G. An. 2004. OsEIN2 is a positive component in ethylene signaling in rice. Plant Cell Physiol. 45:281-289.
32. Kendrick, M. D. and C. Chang. 2008. Ethylene Signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol. 11:479-485.
33. Kevany, B. M., D. M. Tieman, M. G. Taylor, V. D. Cin, and H. J. Klee. 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J. 51:458-467.
34. Kevany, B. M., M. G. Taylor, and H. J. Klee. 2008. Fruit-specific suppression of the ethylene receptor LeETR4 results in early-ripening tomato fruit. Plant Biotechnol. J. 6:295-300.
35. Konishi, M. and S. Yanagisawa. 2008. Two different mechanisms control ethylene sensitivity in Arabidopsis via the regulation of EBF2 expression. Plant Signal Behav. 3:749-751.
36. Korfhage, U., G. F. Trezzini, I. Meier, K. Hahlbrock, and I. E. Somssich. 1994. Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell 6:695-708.
37. Kosugi, S. and Y. Ohashi. 2000. Cloning and DNA-binding properties of a tobacco Ethylene-Insensitive3 (EIN3) homolog. Nucleic Acids Res. 28:960-967.
38. Kumar, N., G. C. Srivastava, and K. Dixit. 2008. Flower bud opening and senescence in roses (Rosa hybrida L.). Plant. Growth Regul. 55:81-99.
39. Lee, J. H. and W. T. Kim. 2003. Molecular and biochemical characterization of VR-EILs encoding mung bean ETHYLENE-INSENSITIVE3-LIKE proteins. Plant Physiol. 132:1475-1488.
40. Lanahan, M. B., H. C. Yen, J. J. Giovannonl, and H. J. Klee. 1994.The Never ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521-530.
41. Langston, B. J., S. Bai, and M. L. Jones. 2005. Increases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias. J. Exp. Bot. 56:15-23.
42. Lelièvre, J. M., A. Latché, B. Jones, M. Bouzayen, and J. C. Pech. 1997. Ethylene and fruit ripening. Physiol. Plant. 101:727-739.
43. Liu, S., L. Xu, Z. Jia, Y. Xu, Q. Yang, Z. Fei, X. Lu, H. Chen, and S. Huang. 2008. Genetic association of ETHYLENE- INSENSITIVE3-like sequence with the sex-determining M locus in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 117:927-933.
44. Lin, Z., L. Alexander, R. Hackett, and D. Grierson. 2008. LeCTR1, a CTR-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. Plant J. 54:1083-1093.
45. Lois, R., A. Dietrich, K. Hahlbrock, and W. Schulz. 1989. A phenylalanine ammonialyase gene from parsely: structure, regulation and identification of elictor and light responsive cis-acting elements. EMBO J. 8:1641-1648.
46. Morello. L., S. Gianì, F. Troina, and D. Breviario. 2010. Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression. J. Exp. Bot. 62:533-544.
47. Mbéguié-A-Mbéguié, D., O. Hubert, B. Fils-Lycaon, M. Chillet, and F. C. Baurens. 2008. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminate cv. Grande naine). Physiol. Plant. 133:435-448.
48. Müller R. and B. M. Stummann. 2003. Genetic regulation of ethylene perception and signal transduction related to flower senescence. Food Agr. Environ. 1:87-94.
49. Müller R., C. A. Owen, Z. T. Xue, M. Welander, and B. Stummann. 2003. The transcription factor EIN3 is constitutively expressed in miniature roses with differences in postharvest life. J. Hort. Sci. Biotech. 78:10-14.
50. Nagao, R. T., V. H. Goekjian, J. C. Hong, and J. L. Key. 1993. Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Mol. Biol. 21:1147-1162.
51. Pastulia, M., D. Roby, C. Dumas, and J. M. Cock. 1997. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase in Brassica oleracea. Plant Cell 9:1-13.
52. Rieu, I., C. Mariani, and K. Weterings. 2003. Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses. J. Exp. Bot. 54:2239-2244.
53. Rouster, J., L. R. Leah, J. Mundy, and V. C. Mills. 1997. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 11:513-523.
54. Shen, Q., P. Zhang, and T. H. Ho. 1996. Modular nature of abscisic acid (ABA) response ABA induction of gene expression in barley. Plant Cell 8:1107-1119.
55. Shibuya, K., K. G. Barry, J. A. Ciardi, H. M. Loucas, B. A. Underwood, S. Nourizadeh, J. R. Ecker, H. J. Klee, and D. G. Clark. 2004. The Central role of PhEIN2 in ethylene responses throughout plant development in Petunia. Plant Physiol. 136:2900-2912.
56. Shibuya, K. M. Nagata, M., N. Tanikawa, T. Yoshioka, T. Hashiba, and S. Satoh. 2002. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J. Exp. Bot. 53:399-406.
57. Simpson, S. D., K. Nakashima, Y. Narusaka, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2003. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33:259-270.
58. Solano, R., A. Stepanova, Q. Chao, and J. R. Ecker. 1998. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE INSENSITIVE3 and ETHYLENE RESPONSE FACTOR1. Genes Dev. 12:3703-3714.
59. Stange. C., I. Ramírez, I. Gómez, X. Jordana, and L. Holuigue. 1997. Phosphorylation of nuclear proteins directs binding to salicylic acid-responsive elements. Plant J. 11:1315-1324.
60. Stepanova, A. N. and J. M. Alonso. 2009. Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol. 12:548-555.
61. Tan, H., X. Liu, N. Ma, J. Xue, W. Lu, J. Bai, and J. Gao. 2006. Ethylene-influenced flower opening and expression of genes encoding Etrs, Ctrs, and Ein3s in two cut rose cultivars. Postharvest Biol. Technol. 40:97-105.
62. Testerink, C., P. B. Larsen, D. van der Does, J. A. J. van Himbergen, and T. Munnik. 2007. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J. Exp. Bot. 58:3905-3914.
63. Tieman, D. M., J. A. Ciardi, M.G. Taylor, and H. J. Klee. 2001. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 26:47-58.
64. Tripathi, S. K. and N. Tuteja. 2007. Integrated signaling in flower senescence. Plant Signal Behav. 2:437-445.
65. Ulmasov, T., Z. B. Liu, G. Hagen, and T. J. Guilfoyle. 1995. Composite structure of auxin response elements. Plant Cell 7:1611-1623.
66. Ulmasov, T., J. Murfett, G. Hagen, and T. J. Guilfoyle. 1997. Aux / IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963-1971.
67. Van Doorn, W. G. 2004. Is petal senescence due to sugar starvation? Plant Physiol. 134:35-42.
68. Van Doorn, W. G. and E. J. Woltering. 2008. Physiology and molecular biology of petal senescence. J. Exp. Bot. 59:453-480.
69. Vrebalov, J., D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano, R. Drake, W. Schuch, and J. J. Giovannoni. 2002. A MADS-Box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343-346.
70. Waki, K., K. Shibuya, T. Yashioka, T. Hashiba, and S. Satoh. 2000. Cloning of a cDNA encoding EIN3-like protein (Dc-EIL1) and decrease in its mRNA level during senescence in carnation flower tissues. J. Exp. Bot. 52:377-379.
71. Wang, W., J. J. Esch, S. H. Shiu, H. Agula, B. M. Binder, C. Chang, S. E. Patterson, and A. B. Bleecker. 2006. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18: 3429-3442.
72. Wang, Y. and P. P. Kumar. 2004. Heterologous expression of Arabidopsis ERS1 causes delayed senescence in coriander. Plant Cell Rep. 22:678-683.
73. Wang, Z. F., T. J. Ying, Y. Zhang, B. L. Bao, and X. D. Huang. 2006. Characteristics of transgenic tomatoes antisensed for the ethylene receptor genes LeETR1 and LeETR2. J. Zhejiang Univ. Sci. 7:591-595.
74. Wilkinson, J. Q., M. B. Lanahan, D. G. Clark, A. B. Bleecker, C. Chang, E. M. Meyerowitz, and H. J. Klee. 1997. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat. Biotechnol. 15:444-447.
75. White, A. J., M. A. Dunn, K. Brown, and M. A. Hughes. 1994. Comparative analysis of genomic sequence and expression of a lipid transfer protein family in winter barley. J. Exp. Bot. 45:1885-1892.
76. Yamaguchi-Shinozaki, K., and K. Shinozaki. 1993. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol. 101:1119-1120.
77. Yanagisawa S., S. D. Yoo, and J. Sheen. 2003. Differential regulation of EIN3 stability by glucose and ethylene signaling in plants. Nature 425:521-525.
78. Yang T. Y., Y. L. Yu, G. D. Yang, J. D. Zhang, and C. C. Zheng. 2009. Tissue-specific expression of the PNZIP promoter is mediated by combinatorial interaction of different cis-elements and a novel transcriptional factor. Nucleic Acid Res. 37:2630-2644.
79. Yang, T. F., Z. H. Gonzalez-Carranza, M. J. Maunders, and J. A. Roberts. 2008. Ethylene and regulation of senescence processes in transgenic Nicotiana sylvestris plants. Ann. Bot. 101:301-310.
80. Yin, X. R., K. S. Chen, A. C. Allan, R. M. Wu, B. Zhang, N. Lallu, and I. B. Ferguson. 2008. Ethylene-induced modulation of genes associated with the ethylene signaling pathway in ripening kiwifruit. J. Exp. Bot. 59:2097-2108.
81. Yin, X. R., A. C. Allen, B. Zhang, R. M. Wu, J. Burdon, P. Wang, I. B. Ferguson, and K. S. Chen. 2009. Ethylene-related genes show a differential response to low temperature during ‘Hayward’ kiwifruit ripening. Postharvest Biol. Technol. 52:9-15.
82. Yokotani, N., S. Tamura, R. Nakano, A. Inaba, and Y. Kubo. 2003.Characterization of a novel tomato EIN3-like gene (LeEIL4). J. Exp. Bot. 54:2775-2776.
83. Yokotani, N., R. Nakano, S. Imanish, M. Nagata, A. Inaba, and Y. Kubo. 2009. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J. Exp. Bot. 60:3433-3442.
84. Yoo, S. D., Y. H. Cho, G. Tena, Y. Xiong, and J. Sheen. 2008. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H2 signalling. Nature 451:789-796.
85. Yoo, S. D., Y. H. Cho, and J. Shen. 2009. Emerging connections in the ethylene signaling network. Trends Plant Sci. 14:270-278.
86. Zhang, Z., H. Zhang, Q. Quan, X. C. Wang, and R. Huang. 2009. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 150:365-377.
87. Zhong, S., Z. Lin, and D. Grierson. 2008. Tomato ethylene receptor-CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. J. Exp. Bot. 59:965-972.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23331-
dc.description.abstract乙烯為氣態植物荷爾蒙,於作物發育和逆境反應具重要調控功能,已知阿拉伯芥 ETHYLENE INSENSITIVE3 (EIN3) 與 EIN3-like 1 (EIL1) 轉錄因子是乙烯訊息傳導途徑調節關鍵因子。為了瞭解更年性作物苦瓜和蝴蝶蘭之 EIN3 同源基因啟動子活性及第一個隱子之重要性,分別將苦瓜 McEIL1 和 蝴蝶蘭 PtEIL1 之啟動子序列連結報導基因 GUS,並構築含或不含5’ 不轉譯區 (5’ untranslated region, 5’-UTR) 內隱子之不同轉殖質體,以農桿菌轉殖至菸草。McEIL1pro::GUS 菸草轉殖株於發芽時胚根和上胚軸皆明顯表現;播種後 10-15 天幼苗於莖與根部皆表現,於莖頂表現明顯;播種後 20-30 天,根、莖與莖頂之表現隨幼苗年齡增加而逐漸增強,子葉與下位葉之葉脈和葉肉之表現亦逐漸增強,年齡較低之葉片表現量較低;於成熟株葉片、花瓣、花萼、柱頭、花藥、果實之果皮、胎座和胚珠皆表現。McEIL1pro::GUS 菸草轉殖株於播種後 15 天幼苗可受到 4℃、37 ℃、黑暗環境、創傷、IAA、GA3、ABA、SA 處理之誘導,使表現量增加;以 BA 和 ACC 處理,表現量變化不明顯。McEIL1pro::GUS 含 5’-UTR隱子之菸草轉殖株表現量較不含 5’-UTR 隱子高,推測此隱子具有 suppressor 而抑制 McEIL1 啟動子活性。
PtEIL1 mRNA 於蝴蝶蘭根、莖、葉與花器皆表現,相對表現量於葉片最高,根部次之,接著為莖部,於開展但未老化之花器表現量最低;花器分為翼瓣、唇瓣和蕊柱,其中於蕊柱之表現量較高。PtEIL1pro::GUS 不含 5’-UTR 隱子之菸草轉殖株於發芽時於胚根表現,但表現量不高;播種後 0-15 天幼苗於莖頂表現量較明顯;播種後 25-30 天幼苗之子葉與下位葉之表現量隨年齡增加而逐漸增強;於成熟株葉片、花瓣、花萼、柱頭和花藥均表現,於果實表現量低。PtEIL1pro::GUS不含 5’-UTR 隱子之菸草轉殖株於播種後 10 天幼苗可受到 4℃ 、37 ℃、黑暗、淹水逆境、GA3、ABA、SA 處理誘導,使表現量增加;以 IAA、BA 和 ACC 處理,表現量變化不明顯。PtEIL1pro::GUS 含 5’-UTR 隱子之菸草轉殖株於幼苗皆不表現,即使以非生物逆境或生長調節物質誘導亦不表現,於成熟葉片和花器之表現位置與 PtEIL1pro::GUS 不含 5’-UTR 隱子之菸草轉殖株相似,推測其 5’-UTR 隱子亦具有抑制啟動子活性之機制,於幼苗之表現受抑制或不表現。
zh_TW
dc.description.abstractEthylene, a gas hormone in higher plants, plays an important role in crop development and stress responses. EIN3 and EIL1 transcription factors found in Arabidopsis were known as critical regulating factors on ethylene signaling transduction. EIN3 homologous genes, McEIL1 from climate crop bitter gourd; and PtEIL1 from Phalaenopsis, were cloned to investigate the promoters activity and the role of the first intron in 5’-UTR. 5’-upstream sequences of both genes with or without the first introns were fused with GUS and transformed into tobacco via Agrobacterium-mediated methods. Promoter activity of McEIL1pro::GUS transgenic tobaccos expressed at seed germination and five-day old seedlings, especially at radicals and epicotyls. Ten-day old and fifteen-day old seedlings showed expression at roots and stem, the shoot tip showed strong activity. The promoter activity of ten-day old to fifteen-day old seedlings gradually increased at shoot tip, cotyledon, veins and mesophyll of lower position leaves. Mature plants of McEIL1pro::GUS transgenic tobaccos showed expression at leaves, petals, sepals, stigma, and anther; fruits showed expression at placenta and ovules. 15-day old McEIL1pro::GUS transgenic tobacco seedlings were induced by treating with 4℃, 37 ℃, darkness, wounding, IAA, GA3, ABA, and SA. BA and ACC treatments make no difference to the McEIL1 promoter expression. The McEIL1pro::GUS expression were reduced when the McEIL1 promoter construction contains the 5’-UTR intron. This suggested a suppressor in the intron may participate in promoter expression of McEIL1.
PtEIL1 mRNA accumulated in roots, stem, leaves, and flowers of Phalaenopsis. Leaves showed highest expression, followed by stem and roots. The fully open flower showed lower expression compared with the vegetative organs. The flower were separated to petals, labellum, and gynostemium, and the PtEIL1 mRNA expressed higher at gynostemium. The transgenic tobaccos of PtEIL1pro::GUS containing the 5’-UTR intron showed promoter activity at germinating seeds and shoot tip of 5-day old to 15-day old seedlings. However, the expression level were low. 25-day old to 30-day old seedlings gradually increased at veins and mesophyll of lower position leaves. Mature plants of PtEIL1pro::GUS transgenic tobaccos showed expression at leaves, petals, sepals, stigma, and anther, but not at fruits. The promoter activity of transgenic tobacco seedlings of PtEIL1pro::GUS containing the 5’-UTR intron were induced by 4℃, 37 ℃, darkness, wounding, flooding, GA3, ABA, and SA treatments. IAA, BA and ACC treatments make no difference to the PtEIL1 promoter expression. The transgenic tobacco showed no PtEIL1pro::GUS expression at seedlings when the PtEIL1 promoter construction contains the 5’-UTR intron, even after treated with plant growth regulator and abiotic stresses. However, the leaves and flower from mature plants showed expression. This suggested the intron may participate in a inhibitor mechanism to change the promoter activity level or the location of expression.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:59:18Z (GMT). No. of bitstreams: 1
ntu-100-R98628115-1.pdf: 5841396 bytes, checksum: 831728c712cc6be9b4e1e43f484af972 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書……………………………………………………......………… i
誌謝……………………………………………………………………......…………. ii
中文摘要…………………………………………………………………………..……iii
Abstract....…………………………………………………………….………………….v
壹、前言.............................................................................................................................1
貳、前人研究……………………………………………………………………………2
(一) 植物乙烯訊息傳導途徑之調控……………………………………...……………3
(二) 乙烯訊息傳導途徑轉錄因子 EIN3/EIL 之調控…………………...……………7
(三) 應用乙烯訊息傳導途徑延緩果實後熟與花瓣老化之策略……….……………14
二、啟動子與隱子序列於轉殖作物開發之應用……………………………….……18
(一) 啟動子活性分析與應用………………………………………………………….18
(二) 隱子對基因表現之影響與應用………………………………………………….21
叁、材料與方法...............................................................................................................23
ㄧ、試驗材料...................................................................................................................23
植物材料.................................................................................................................23
質體材料.................................................................................................................23
試驗方法.................................................................................................................23
(一) 蝴蝶蘭 RNA 萃取……………………………………………………………....23
(二) RNA 之瓊酯膠體電泳...........................................................................................24
(三) Real-Time PCR 分析..............................................................................................24
(四) 聚合酶連鎖反應.....................................................................................................25
(五) 限制酶酶切反應.....................................................................................................25
(六) 瓊脂洋菜凝膠 (Agarose gel) 電泳與分析...........................................................25
(七) 膠體內 DNA 片段回收........................................................................................25
(八) 接合反應 (Ligation)..............................................................................................26
(九) 轉型反應 (Transformation)...................................................................................26
(十) 質體 DNA 之小量製備........................................................................................26
(十) DNA 之定序...........................................................................................................27
(十二) 啟動子表現質體之構築策略.............................................................................27
(十三) 農桿菌勝任細胞之製備.....................................................................................29
(十四) 農桿菌之電穿孔法轉型.....................................................................................30
(十五) 小量製備農桿菌質體…………….……………………………………………30
(十六) 菸草葉片以農桿菌媒介法轉殖.........................................................................31
(十七) 菸草基因組 DNA 之萃取................................................................................31
(十八) 南方氏雜交分析.................................................................................................32
(十九) 菸草轉殖株之啟動子活性分析取樣.................................................................33
(二十) 啟動子活性誘導性分析處理方式.....................................................................33
(二十一) GUS活性組織化學染色分析.........................................................................34
肆、結果...........................................................................................................................35
ㄧ、McEIL1pro::GUS 活性分析..................................................................................35
二、PtEIL1 於蝴蝶蘭各部位之表現..............................................................................39
三、PtEIL1pro::GUS 活性分析....................................................................................39
伍、討論...........................................................................................................................42
一、McEIL1pro::GUS 於菸草轉植株之表現情形與隱子對基因表現之影響...........42
二、PtEIL1pro::GUS 於菸草轉植株之表現情形與隱子對基因表現之影響............46
三、McEIL1 與 PtEIL1基因表現與啟動子活性比較.................................................47
陸、結論與展望……………………………………………………………………......51
參考文獻.......................................................................................................................104
圖目錄
圖1. 苦瓜 EIN3 同源基因 McEIL1 結構與兩種啟動子活性分析載體 T-DNA 區域示意圖.............................................................................................................52
圖2. 蝴蝶蘭 EIN3 同源基因 PtEIL1 結構與兩種啟動子活性分析載體 T-DNA區域示意圖.............................................................................................................46
圖3. 苦瓜 McEIL1 啟動子活性分析載體 pGME3pi 構築策略..........................57
圖4. 苦瓜 McEIL1 啟動子活性分析載體 pGME3p 構築策略...........................59
圖 5. 蝴蝶蘭 PtEIL1啟動子活性分析質體 pGPE3p 構築策略.........................62
圖 6. 蝴蝶蘭 PtEIL1啟動子活性分析質體 pGPE3pi 構築策略........................67圖7. 菸草 McEIL1pro::GUS 含 intron1 擬轉殖株 NME3pi 之聚合酶連鎖反應.......................................................................................................................70圖 8. 菸草 McEIL1pro::GUS 含 intron1 擬轉殖株 NME3pi南方氏雜交分析..71
圖9. 菸草 McEIL1pro::GUS 不含 intron1 擬轉殖株 NME3p 之聚合酶連鎖反應.......................................................................................................................72
圖 10. 菸草 McEIL1pro::GUS 含 intron1 轉殖株 NME3pi 於播種後不同天數之啟動子活性.....................................................................................................74
圖11. 菸草 McEIL1pro::GUS 含 intron1 轉殖株NME3pi 於T0 代花器不同發育時期之啟動子活性...........................................................................................75
圖12. 菸草 McEIL1pro::GUS 含 intron1 轉殖株NME3pi 於T0 代果實不同發育時期之啟動子活性...........................................................................................76
圖 13. 菸草 McEIL1pro::GUS 含 intron1 轉殖株 NME3pi 幼苗以不同生長調節物質處理之啟動子表現情形............................................................................77
圖 14. McEIL1pro::GUS 含 intron1 菸草轉殖株 NME3pi 幼苗以不同非生物逆境處理之 GUS 活性..........................................................................................78
圖 15. 菸草 McEIL1pro::GUS 不含 intron1 轉殖株 NME3p 幼苗於播種後不同天數之啟動子活性..............................................................................................80
圖16. 菸草 McEIL1pro::GUS 不含 intron1 轉殖株 NME3p 於T0 代花器不同發育時期之啟動子活性.......................................................................................81
圖17. 菸草 McEIL1pro::GUS 不含 intron1 轉殖株NME3p 於T0 代果實不同發育時期之啟動子活性...........................................................................................82
圖 18. 菸草 McEIL1pro::GUS 不含 intron1 轉殖株 NME3p 幼苗以不同生長調節物質處理之啟動子表現情形............................................................................83
圖 19. McEIL1pro::GUS 不含 intron1 菸草轉殖株 NME3p 幼苗以不同非生物逆境處理之 GUS 活性......................................................................................84
圖 20. 播種後 10 天之 McEIL1pro::GUS 含 intron1 菸草轉殖株 NME3pi-12 幼苗與不含 intron1 菸草轉殖株 NME3p-5, 6, 7 幼苗之表現情形比較.............86
圖 21. 萃取蝴蝶蘭 RNA 各部位之位置............................................................87
圖 22. 蝴蝶蘭 PtEIL1 於白花紅唇蝴蝶蘭 (Phalaenopsis E-Shin Angel) 各部位之表現................................................................................................................88
圖23. 菸草 PtEIL1pro::GUS 含 intron1 擬轉殖株 NPE3pi 之聚合酶連鎖反應.......................................................................................................................89
圖24. 菸草 PtEIL1pro::GUS 不含 intron1 擬轉殖株 NPE3p 之聚合酶連鎖反應.......................................................................................................................90
圖 25. 菸草 PtEIL1pro::GUS 含 intron1 擬轉殖株 NPE3pi 南方氏雜交分析.91
圖 26. 菸草 PtEIL1pro::GUS 含 intron1 轉殖株 NPE3pi 於播種後不同天數之啟動子活性.........................................................................................................93
圖27. 菸草 PtEIL1pro::GUS 含 intron1 轉殖株NPE3pi 於T0 代花器不同發育時期之啟動子活性..............................................................................................94
圖28. 菸草 PtEIL1pro::GUS 含 intron1 轉殖株NPE3pi 於T0 代果實不同發育時期之啟動子活性..............................................................................................95圖 29. 菸草 PtEIL1pro::GUS 含 intron1 轉殖株 NPE3pi 幼苗以不同生長調節物質處理之啟動子表現情形................................................................................96
圖 30. PtEIL1pro::GUS含 intron1 菸草轉殖株 NPE3pi 幼苗以不同非生物逆境處理之 GUS 活性.............................................................................................97
圖 31. 菸草 PtEIL1pro::GUS 不含 intron1 轉殖株 NPE3p 於播種後不同天數之啟動子活性.....................................................................................................98
圖32. 菸草 PtEIL1pro::GUS 不含 intron1 轉殖株 NPE3p 於T0 代花器不同發育時期之啟動子活性...........................................................................................99
圖33. 菸草 PtEIL1pro::GUS 不含 intron1 轉殖株NPE3p 於T0 代果實不同發育時期之啟動子活性.........................................................................................100
圖 34. 菸草 PtEIL1pro::GUS 不含 intron1 轉殖株 NPE3p 幼苗以不同生長調節物質處理之啟動子表現情形..........................................................................101圖 35. PtEIL1pro::GUS 不含 intron1 菸草轉殖株 NPE3p 幼苗以不同非生物逆境處理之 GUS 活性........................................................................................102
dc.language.isozh-TW
dc.subject非生物逆境zh_TW
dc.subject乙烯訊息傳導途徑zh_TW
dc.subject菸草zh_TW
dc.subject轉譯區zh_TW
dc.subject隱子zh_TW
dc.subject生長調節物質zh_TW
dc.subjectabiotic stressen
dc.subjectEthylene signal transductionen
dc.subjecttobaccoen
dc.subjectintronen
dc.subjectplant growth regulatoren
dc.title苦瓜與蝴蝶蘭 EIN3 同源基因之啟動子活性研究zh_TW
dc.titleStudies on the Promoter Activity of Ethylene Insensitive 3-Like Genes from Momordica charantia and Phalaenopsisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor黃鵬林(Pung-Ling Huang)
dc.contributor.oralexamcommittee何國傑(Kuo-Chieh Ho),洪傳揚(Chwan-Yang Hong)
dc.subject.keyword乙烯訊息傳導途徑,菸草,轉譯區,隱子,生長調節物質,非生物逆境,zh_TW
dc.subject.keywordEthylene signal transduction,tobacco,intron,plant growth regulator,abiotic stress,en
dc.relation.page111
dc.rights.note未授權
dc.date.accepted2011-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved