Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23292
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor盧虎生
dc.contributor.authorCheng-Zu Panen
dc.contributor.author潘昶儒zh_TW
dc.date.accessioned2021-06-08T04:58:50Z-
dc.date.copyright2010-08-24
dc.date.issued2010
dc.date.submitted2010-08-18
dc.identifier.citation李祿豐。1999。氣象因素對宜蘭地區水稻產量之影響。花蓮區研究彙報 17: 93-102。
宋勳。1986。四十年來台灣地區稻作生產改進研討會專輯pp.109-125。黃正華先生
農學獎學金基金會。pp.109-125。
宋勳、劉瑋婷。1996。稻米品質的影響因素與分級。台灣省農業試驗所專刊
59: 133-154。
吳以健。2009。溫度環境與水稻穀粒產量及品質之相關性。碩士論文。台北,台灣:國立台灣大學農藝研究所。
洪梅珠、宋勳。1990。糙米外觀檢定手冊。台灣省政府農林廳。
曾東海。1999。稻之品種改良及示範推廣-稉稻篇。台灣稻作發展史 pp181-183。
台灣省政府農林廳。
葉振福。2002。低溫對發芽稻米芽鞘蛋白質之影響。碩士論文。台南,台灣:國立成功大學化學研究所。
盧虎生、劉韻華、中央氣象局。2006。臺灣優質水稻栽培之環境挑戰與因應措施。作物、環境與生物資訊 3: 297 - 306。
小葉田亨、植向直哉、稻村達也、加賀田恒。2004。子実への同化産物供給不足による高温下の乳白米発生。日本作物學會紀事 73: 315-322。
佐藤庚、稻葉健五。1973。高温による水稲の稔実障害に関する研究 : 第2報 穂と茎葉を別々の温度環境下においた場合の稔実。日本作物學會紀事 42: 214-219。
長谷川利拡、吉本真由美、桑形恒男、石鄉岡康史、近藤始彥、石丸努。2009。2007年夏季の水稻の高温不稔調查について。農業および園芸 84: 42-45。
近藤始彥、石丸努、三王裕見子、梅本貴之。2005。イネの高温登熟研究の今後の方向。農業技術 60: 462-470。
若松謙一、佐々木修、上薗一郎、田中明男。2007。暖地水稻の登熟期間の高溫か玄米品質に及ぼす影響。日本作物學會紀事 76: 71-78。
森田敏、白土宏之、高梨純一、藤田耕之輔。2004。高温が水稻の登熟に及ばす影響。日本作物學會紀事73: 77-83。
森田敏。2008。イネの高温登熟障害の克服に向けて。日本作物學會紀事77: 1-12。
Abiko, M., K. Akibayashi, T. Sakata, M. Kimura, M. Kihara, K. Itoh, E. Asamizu, S. Sato, H. Takahashi, and A. Higashitani. 2005. High-temperature induction of male  sterility during barley ( Hordeum vulgare L.) anther development is mediated by  transcriptional inhibition. Sexual Plant Reproduction 18:91-100.
Allahgholipour, M., A.J. Ali, F. Alinia, T. Nagamine, and Y. Kojima. 2006. Relationship between rice grain amylase and pasting properities for breeding better quality rice  varieties. Plant Breeding. 125:357-362.
Chrastil, J. 1994. Stickiness of oryzenin and starch mixtures form preharvest and postharvest rice grains. Journal of Agricultural Food Chemistry 42:2147-2151.
Gifford, R.M. 1995. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: long-term vs. short-term distinctions  for modeling. Global Change Biology 1:385-396.
Huang, J.J. and H.S. Lur. 2000. Influences of temperature during grain filling stages on grain quality in rice (Oryza sativa L.) 1. Effects of temperature on yield  components, milling quality, and grain physico-chemical properties. (in Chinese with English summary) Journal of Agricultural Association of China 1:370-389.
IPCC (2007) Climate change 2007: The physical basis. Summary for policymakers. Contribution of Working Group I to the 4th Assessment Report of the IPCC. IPCC  Secretariat, Geneva. 24p.
Jagadish, S.V.K., P.Q. Craufurd, and T.R. Wheeler. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany  58:1627-1635
Jiang, H., W. Dian, and P. Wu. 2003. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching  enzyme. Phytochemistry 63:53-59.
Juliano, B.O. 1985. Biochemical property of rice. In B.O. Juliano. (ed.) Rice: Chemistry and Technology. American Association of Cereal Chemistry. USA.
Kim SS, Lee SE, Kim OW, Kim DC (2000) Physicochemical characteristics of chalky kernels and their effects on sensory quality of cooked rice. Cereal Chemistry Volume, Number 3: 77: 376-379
Kobata, T., and N. Uemuki. 2004. High temperatures during the grain-filling period do  not reduce the potential grain dry matter increase of rice. Agronomy Journal  96:406-414.
Kondo M, T Ishimaru, Y Sanoh, T Umemoto (2005) Research directions on grain ripening under high temperature in rice. (in Japanese) Agric. Technol. 60:462-4702.
Liu SC, Wang CH, Shiu CJ, Chang HW, Hsiao CK, Liaw SH (2002) Reduction in sunshine duration over Taiwan: causes and implications. Terrestrial, Atmospheric and Oceanic Sciences 13: 523-546.
Long S.P. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been  underestimated? Plant Cell and Environment 14:729-739.
Makino A., H. Nakano, and T. Mae. 1994. Effects of growth temperature on the responses of ribulose-1,5-biphosphate carboxylase, electron transport components,  and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to  photosynthesis. Plant Physiology 105:1231-1238.
Matsue, Y., K. Odahara, and M. Hiramatsu. 1995. Differences in amylase content, amylographic characteristics and storage proteins of grains on primary and  secondary rachis branches in rice. Japanese Journal of Crop Science 64:601-606.
Matsui, T., K. Omasa and T. Horie. 1997. High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Japan Journal Crops Science 66:449-455.
Matsui, T., K. Omasa, and T. Horie. 2000. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza  sativa L.). Plant Production Science 3:430-434.
Matsui, T., K. Omasa, and T. Horie. 2001a. Comparison between anthers of two rice (Oryza sativa L.) cultivars with tolerance to high temperatures at flowering or  susceptibility. Plant Production Science 4:36-40.
Matsui, T., K. Omasa, and T. Horie. 2001b. The difference in sterility due to high temperatures during the flowering period among Japonica-rice varieties. Plant  Production Science 4:90-93.
Nagata, K., T. Takita, S. Yoshinaga, K. Terashima, and A. Fukuda. 2004. Effect of air temperature during the early grain-filling stage on grain fissuring in rice. Japanese  Journal of Crop Science 73:336-342.
Nagato, K., M. Ebata, and M. Ishikawa. 1972. Protein content of developing and mature rice grain. Japanese Journal of Crop Science 41:472-479.
Oh-e, I., K. Saitoh, and T. Kuroda. 2007. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production  Science 10:412-422.
Peng, S.B., J.L. Huang, J.E. Sheehy, R.C. Laza, R.M. Visperas, X. Zhong, G.S. Centeno, G.S. Khush, and K.G. Cassman. 2004. Rice yield decline with higher night  temperature from global warming. Proceedings of the National Academy of Sciences USA 101:9971-9975.
Prasad, P.V.V., K.J. Boote, L.H. Allen, J.E. Sheehy, and J.M.G. Thomas. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in  response to high temperature stress. Field Crops Research 95: 398-411.
Shotwell, M.A. and B.A. Larkins. 1989. The biochemistry and molecular biology of seed storage proteins. In A. Marcus (ed.) The Biochemistry of Plants: a  Comprehensive Treatise. Academic Press, Orlando, FL.
Sowbhagya, C.M., B.S. Ramesh, and K.R. Bhattacharya. 1987. The relationship between cooked rice texture and the physicochemical properties of rice. Journal of  Cereal Science 5:287-297.
Tashiro, T. and I.F. Wardlaw. 1991a. The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. Australian Journal of Plant  Physiology 18:259-265.
Tashiro, T. and I.F. Wardlaw. 1991b. The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Australian  Journal of Plant Physiology 42:485-496.
Tsutomu Ishimaru , Akemi K. Horigane, Masashi Ida , Norio Iwasawa , Yumiko A. San-oh ,Mikio Nakazono, Naoko K. Nishizawa, Takehiro Masumurae, Motohiko Kondo, Mitsuru Yoshida., 2009. Formation of grain chalkiness and changes inwater distribution in developing rice caryopses grown under high-temperature stress. Journal of Cereal Science 50 (2009) 166-174.
Webb, B.D. 1985. Criteria of rice quality in the United State. In B.O. Juliano (ed.) Rice: Chemistry and Technology. American Association of Cereal Chemistry. USA.
Yao MH, Lur HS, Chu C (1999) Analysis of diurnal temperature range in Taiwan area. Journal of the Agricultural Association of China 188: 32-45.
Ziska, L.H. and J.A. Bunce. 1998. The influence of increasing growth temperature and CO2 concentration on the ratio of respiration to photosynthesis in soybean  seedlings. Global Change Biology 4:637-643.
Zhong, L.J., F.M. Cheng, X. Wen, Z.X. Sun, and G.P. Zhang. 2005. The deterioration of eating and cooking quality caused by high temperature during grain filling in  early-season indica rice cultivars. Journal of Agronomy and Crop Science  191:218-225.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23292-
dc.description.abstract水稻是台灣最重要的糧食作物,栽培品種主要以稉型水稻為主。稉稻適種於溫帶氣候,該地區栽培之稉稻穀粒有效充實期長,充實期平均氣溫低於25℃。台灣因地處亞熱帶地區,氣溫環境高於較高緯度的日本、韓國等其他傳統稉稻栽培地區。高溫環境促使區內水稻在生育後期時的有效充實期較短且穀粒充實速度較快,導致稻米產量與品質皆不理想。Intergovernmental Panel on Climate Change (IPCC) 指出目前溫室效應已造成全球氣溫明顯上升且變動劇烈。在此因氣候暖化所帶來的高溫環境下,台灣的水稻栽培勢將面臨更嚴峻的挑戰,未來該如何藉由改善栽培方式以因應全球暖化變遷趨勢,並進一步提升稻米產量及品質,將是現今及未來國內農業的重要研究方向。
本研究主要藉由設計花蓮地區主要稉稻栽培品種台稉2號及高雄139號周年栽培試驗,配合各栽培時期所遭遇到之不同氣象條件,進而分析稻米之產量及品質性狀與氣象因素之相關性。97與98年在花蓮區農業改良場分別完成7個與8個栽培期,同時調查分析其氣象條件、產量構成要素與品質性狀。結果顯示:花蓮地區各栽培期之抽穗後日均溫以二月下旬插秧者最高,而以八月中旬插秧者最低。抽穗後氣溫影響以抽穗後15日內最為顯著,同時影響產量、穀粒外觀與食味品質,品種間則以台稉2號相較於高雄139號對高溫環境的反應較為敏感。抽穗後氣溫上升的趨勢導致單株有效穗數與稔實率的降低,導致單位面積產量之減少,其中以台稉2號表現較為明顯。在外觀方面,抽穗後15日內平均氣溫、平均單日最高溫及平均單日最低溫與糙米之完整米率、白米之正常粒率呈負相關,與未熟米率、粉質狀粒呈正相關,推測原因為高溫使穀粒充實過快,澱粉堆積不緊實所致,品種間差異仍以台稉2號變動幅度較為明顯。食味方面,抽穗後日均溫上升使直鏈澱粉含量下降,進而提高米飯的食味品質。
  本研究之田間試驗結果可用於彙整影響花蓮地區主要水稻品種之稻作產量與品質之氣溫範圍,並可藉以規劃安全及優質栽培時期,及作為耐性品種育種之參考,未來將進一步進行生理層面之探討以及其他田間氣候因素之分析,期彙整試驗結果並提出栽培改善建議供水稻農友參效仿行。
zh_TW
dc.description.abstractTaiwan is one of the lowest latitude zones where Japonica type rice is mostly cultivated. Japonica type rice adapts to temperate climate like Japan and Korea, where has a long grain filling period and suitable grain filling temperature lower than 25℃. In resent years, the warming trend of global climate change has became a significant phenomena, it will impact Taiwan’s rice yield. The warm climate of Taiwan may lead to a lower yield and quality than other traditional Japonica type rice culture regions. Intergovernmental Panel on Climate Change(IPCC)indicated that global warming was apparent and getting severe. Thus, there will be a strict challenge on rice cultivation in Taiwan. It is important to improve the agricultural practice against the future warming climate.
  To understand the relationship between the yields/quality of two prevailing rice cultivars of Hualien district(Taikeng 2 and Kaohsiung 139)and climate factors, two year-round cultivation experiment with 7 and 8 culture periods were conducted in 2008 and 2009 respectively. The results revealed that the designed different culture periods covered with different accumulated temperature, daily mean temperature, daily maximum temperature and daily minimum temperature. The temperature after heading for crop transplanted in late February was highest, and for the one transplanted in middle August was the lowest among the all culture periods. The most sensitive period of temperature was within 15 days after heading. The temperature of this periods affected yields, grain appearance qualities and eating qualities. Rising temperature after heading significantly decreased panicle number and grain sterility in Taikeng 2(TK2) rather than in Kaohsiung 139(KH139). For grain appearance qualities, significant negative correlations were found between whole kernel ratio and daily mean temperature/maximum temperature/minimum temperature of the period within15 days after heading in both two varieties. On the contrary, the correlation of opaque kernel ratio showed positive correlation with the temperature. For eating qualities, rising of temperature of within 15 days after heading decreased the accumulation of amylose. Finally, high temperature increased the eating qualities of TK2 by decreasing amylose contend. KH139 in general showed a higher stability than did the TK2.
  The results of this research revealed the correlation between high temperature and rice yields/qualities of two most common cultivars in Hualien region. The present results are valuable for designing appropriate culture practice and for breeding new adaptive varieties in coping with climate change.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:58:50Z (GMT). No. of bitstreams: 1
ntu-99-R96621118-1.pdf: 816495 bytes, checksum: 622493997667210574bcaf8911edddf9 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
口試委員審定書…………………………………………………………………….
致謝…………………………………………………………………………………..I
中文摘要……………………………………………………………………………...II
英文摘要……………………………………………………………………………...IV
壹、前言……………………………………………………………………………….1
貳、前人研究………………………………………………………………………….4
參、研究構想………………………………………………………………………...11
肆、材料與方法……………………………………………………………………...12
伍、結果……………………………………………………………………………...14
陸、討論……………………………………………………………………………...52
柒、結論……………………………………………………………………………...60
捌、參考文獻………………………………………………………………………...64
dc.language.isozh-TW
dc.subject高雄145號zh_TW
dc.subject品質zh_TW
dc.subject水稻zh_TW
dc.subject氣溫zh_TW
dc.subject台稉zh_TW
dc.subject2號zh_TW
dc.subjectKH139en
dc.subjectqualityen
dc.subjectriceen
dc.subjectair temperatureen
dc.subjectTK2en
dc.title花蓮地區氣溫環境與水稻品種間稻米品質之相關性zh_TW
dc.titleResearch on relationship between field air temperature and rice grain quality of cultivars in Hualien districten
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高景輝,朱鈞,陳宗禮,宋濟民
dc.subject.keyword水稻,氣溫,台稉,2號,高雄145號,品質,zh_TW
dc.subject.keywordrice,air temperature,TK2,KH139,quality,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2010-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
797.36 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved