請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23289完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳(Wei-Fang Su) | |
| dc.contributor.author | Li-Wei Yin | en |
| dc.contributor.author | 殷立煒 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:58:49Z | - |
| dc.date.copyright | 2010-08-20 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | A. P. Alivisatos*, X. Peng, and W. U. Huynh, “CdSe Nanocrystal
Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices” Adv. Mater. 1999, 11, 923. z A. P. Alivisatos*,W. U. Huynh, and J. J. Dittmer, “Hybrid Nanorod-Polymer Solar Cells” Science 2002, 295, 2425. z M. R. Andersson*, M, Svensson. F. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, and O. Ingands, ”High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative” Adv. Mater. 2003, 15, 988 z M. R. Andersson*, S. Admassie, O. Inganas, W. Mammo, and E. Perzon, “Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers” Synthetic Metals 2006, 156, 614. z J. Z. Brzezinski*, and J. R. Reynolds, ”A New, Improved and Convenient Synthesis of 4H-Cyclopenta[2,1-b:3,4-b’]-dithiophen-4-one” Synthesis 2002, 1053. z Y. Cao*, E. Wang, L. Wang, L. Lan, C. Luo, W. Zhuang, and J. Peng, “High-performance polymer heterojunction solar cells of a polysilafluorene derivative” Appl. Phys. Lett. 2008 92, 033307. z Y. Cao*, Y. Xia, J. Luo, X. Deng, X. Li, D. Li, X. Zhu, and W. Yang, “Novel Random Low-Band-Gap Fluorene-Based Copolymers for Deep Red/Near Infrared Light-Emitting Diodes and Bulk Heterojunction Photovoltaic Cells” Macromol. Chem. Phys. 2006, 207, 511. z W. C. Chen*, W. Y. Lee, K. F. Cheng, C. C. Chueh, C. S. Than, and J. L. Lin, “Effects of Acceptors on the Electronic and Optoelectronic Properties of Fluorene-Based Donor-Acceptor-Donor Copolymers” Macromol. Chem. Phys. 2007, 208, 1919. z C. W. Chen*, W. F. Su, Y. Y. Lin, T. S. Chu, S. S. Li, C. H. Chuang, C. H. 71 Chang, C. P. Chang, and M. W. Chu, “Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells” J. Am. Chem. Soc. 2009, 131, 3644. z Y. X. Weng*, L. Li, Y. Liu, L. Wang, and G. Z. Yang, “Surface-Binding Forms of Carboxylic Groups on Nanoparticulate TiO2 Surface Studied by the Interface-Sensitive Transient Triplet-State Molecular Probe “ J. Phys. Chem. B 2003, 107, 4356. z M,.Grätzel*, P. Wang, M. Zakeeruddin, P. Comte, R. Charvet, and R. H. Baker, “Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals” J. Phys. Chem. B 2003, 107, 14336. z A. J. Heeger*, J. Pei, W. L. Lin, and W. Huang, “ A Novel Series of Efficient Thiophene-Based Light-Emitting Conjugated Polymers and Application in Polymer Light-Emitting Diodes“ Macromolecules 2000, 33, 2462. z A. J. Heeger*, G. Yu, J. Gao, J. C. Hummelen, and F. Wudl, ” Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions” Science 1995, 270,1789. z A. J. Heeger*, W. Ma, C. Yang, X. Gong, and K. Lee, ” Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology” Adv. Funct. Mater. 2005, 15, 1617. z A. J. Heeger*, S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, and K. Lee, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%” Nature Photonics 2009, 3, 297. z A. J. Heeger*, M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, and C. J. Brabec, “Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency” Adv. Mat. 2006, 18, 789. z A. J. Heeger*, J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, and G. C. Bazan, ”Efficiency Enhancement in Low-Bandgap Polymer Solar Cells by 72 Processing with Alkane Dithiols” Nat. Mater. 2007, 6, 497. z A. J. Heeger*, J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, and G. C. Bazan, “Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells” J. Am. Chem. Soc. 2008, 130, 3619. z R. A. J. Janssen*, M. M. Wienk, M. Turbiez, and J. Gilot, “Narrow-Bandgap Diketo- Pyrrolo-Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance” Adv. Mater. 2008, 20, 2556. z Ko*, B. T. S. H. Chan, C. P. Chen, T. C. Chao, and C. S. Lin, “Synthesis, Characterization, and Photovoltaic Properties of Novel Semiconducting Polymers with Thiophene-Phenylene-Thiophene (TPT) as Coplanar Units” Macromolecules 2008, 41, 5519. z M. Leclerc*, N. Blouin, and A. Michaud, “A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells” Adv. Mater. 2007, 19, 2295. z M. Leclerc*, M. Ranger, and D. Rondeau, ”New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping” Macromolecules 1997, 30, 7686. z M. Leclerc*, Y. Zou, D. Gendron, R. B. Aich, and A. Najari, ”A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications” Macromolecules 2009, 42, 2891. z Y. F. Li*, L. Hou, Z. Tan, X. Wang, Y. Zhou, and M. Han, ” Novel two-dimensional donor-acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties” J Polym Sci Part A: Polym Chem 2008, 46, 4038. z M. D. McGehee*, M. Kevin, and D. Michael, ” Conjugated Polymer Photovoltaic Cells” Chem. Mater. 2004, 16, 4533. z V. D. Mihailetchi*, L. J. A. Koster, and P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells” Appl. Phys. Lett. 2006, 88, 73 093511. z R. Movileanu*, J, Lu, F. Liang, N. Drolet, J. Ding, and Y. Tao, “Crystalline Low Band- Gap Alternating Indolocarbazole and Benzothiadiazole-Cored Oligothiophene Copolymer for Organic Solar Cell Applications” Chem. Commun. 2008, 5315. z D. Muhlbacher*, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High Photovoltaic Performance of a Low-Bandgap Polymer” Adv. Mater. 2006, 18, 2884. z J. Nelson*, P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, and J. R. Durrant, “Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer” J. Phys. Chem. B, 2006, 110, 7635. z S. C. Rasmussen*, D. D. Kenning, K. A. Mitchell, T. R. Calhoun, M. R. Funfar, and D. J. Sattler, ” Thieno[3,4-b]pyrazines: Synthesis, Structure, and Reactivity” J. Org. Chem. 2002, 67, 9073. z J. Roncali*, H. Brisset, C. T. Gautier, A. Gorgues, and M. Jubault, ” Novel narrow bandgap polymers from sp3 carbon-bridged bithienyls: poly(4,4-ethylenedioxy -4H-cyclopenta[2,1-b;3,4-b]dithiophene)” J. Chem. Soc., Chem. Commun. 1994, 1305. z A. Suzuki*, and N. Miyaura, ”Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds” Chem. Rev. 1995, 95, 2457. z W. F. Su*, Y. T. Lin, T. W. Zeng, W. Z. Lai, C. W. Chen, Y. Y. Lin, and Y. S. Chang, “Efficient photoinduced charge transfer in TiO2 nanorod/conjugated polymer hybrid materials” Nanotechnology, 2006, 17, 5781. z W. F. Su*, B. Pal, W. C. Yen, J. S. Yang, C. Y. Chao, Y. C. Hung, S. T. Lin, C. H. Chuang, and C. W. Chen, “Substituent Effect on the Optoelectronic Properties of Alternating Fluorene-Cyclopentadithiophene Copolymer s” Macromolecules 2008, 41, 6664. 74 z Y. Ta*, J. Lu, F. Liang, N. Drolet, J. Ding, and R. Movileanu, ”Crystalline low band-gap alternating indolocarbazole and benzothiadiazole-cored oligothiophene copolymer for organic solar cell applications” Chem. Commun. 2008, 5315. z C. Ting*, C. Y. Yu, C. P. Chen, S. H. Chan, and G. W. Hwang, “Thiophene/Phenylene/Thiophene-Based Low-Bandgap Conjugated Polymers for Efficient Near-Infrared Photovoltaic Applications” Chem. Mater. 2009, 21, 3262. z Y. Yang*, L. Huo, J. Hou, H. Y. Chen, S. Zhang, and Y. Jiang. “Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c] pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells” Macromolecules, 2009, 42, 6564. z Y. Yang*, J. Hou, H. Y. Chen, S. Zhang, and G. Li, “Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole” J. Am. Chem. Soc. 2008, 130, 16144. z Y. Yang*, J. Hou, H. Y. Chen, S. Zhang, R. I. Chen, Y. Wu, and G. Li “Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells” J. Am. Chem. Soc. 2009, 131, 15586. z Y. Yang*, H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, L. Yu, Y. Wu, and G. Li “Polymer solar cells with enhanced open-circuit voltage and efficiency” Nature Photonics 2009, 3, 649. z Z. Zhu*, D. Muhlbacher, R. Gaudiana, M. Morana, M. Scharber, and C. Brabec “Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications” Macromolecules 2007, 40, 1981. z E. W. Mwijer*, H. A. M. van Mullekom, J. A. J. M. Vekemans, and E. E. Havinga, “Developments in The Chemistry and Band Gap Engineering of Donor-Acceptor Substituted Conjugated Polymers” Materials Science & Engineering 2001 , 30, 1. 75 z Z, Lin*, and L. Xue, “Theoretical aspects of palladium-catalysed carbon–carbon cross-coupling reactions” Chem. Soc. Rev. 2010, 39, 1692 z 二氧化鈦奈米晶體之表面改質應用於有機無機混摻太陽能電池之硏究 = Study of surface modification of TiO2 nanorod in organic/inorganic hybrid solar cells / 徐瑞鴻(Jui-Hung Hsu*)撰。 z 高分子/奈米粒子之混摻太陽能電池硏究 = Research on polymer-nanoparticle solar cells / 廖佑加(Yu-Chia Liao*)撰。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23289 | - |
| dc.description.abstract | 本研究的目標是合成低能隙導電高分子及表面改質劑應用於高分子二氧化鈦混摻系統太陽能電池中。
一系列含有不同芴(fluorene)與環戊噻吩(cyclopentaditiophene)(CPDT)組成的共聚物利用Stille 交叉耦合方法合成出來。與純聚環戊噻吩的吸收光譜相比時,含有芴高分子之吸收光譜有藍移現象。此藍移現象會隨著芴在高分子中的濃度增加而增強。高分子中分別含25莫爾百分比、50莫爾百分比與75莫爾百分比例的芴時,高分子的能隙可以依序調至1.72 eV、1.82 eV與1.89eV。同時高分子的最高填滿軌域(HOMO)能階也如我們預期可隨著加入芴而有明顯降低現象,其可以增加太陽能電池之開路電壓值(Voc)。模擬的結果與實際實驗數據在光譜性質與電化學性質上有一致性的趨勢。藉由此簡單地改變高分子中的芴與環戊噻吩之組成,我們可以輕易的調整高分子的最高填滿軌域與能隙以便提升太陽能電池效率。 另外,在高分子與TiO2混摻太陽能電池中,我們合成導電小分子2-cyano-3-(5-(7-(thiophen-2-yl)-2,1,3-benzothiadiazol-4-yl)thiophen-2-yl)acrylic acid(W4)與(Z)-2-cyano-3-(5-(7-(5-(9,9-dioctyl-9H-fluoren-2-yl)thiophen-2-yl) benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)acrylic acid(W4-F)用於修飾TiO2表面。透過TiO2表面的修飾使元件效率由未改質前的0.44%大幅的上升至0.75%。如此顯著的提升主要歸因於W4與W4-F加強了TiO2與高分子間電荷的分離與傳導,降低電荷的再結合,顯著的增強太陽能電池的電流值。 | zh_TW |
| dc.description.abstract | The objective of this research is to design and synthesis novel low band gap conducting polymers and surface modifiers for hybrid polymer/TiO2 solar cell applications.A series of alternating copolymers consisting of different compositions of fluorene and cyclopentaditiophene(CPDT) were synthesized via Stille coupling. The absorption spectra of copolymers containing fluorene moiety showed a blue-shift of main peak as compared with that of CPDT‘s homo polymer PCPDTBT. Additionally, the effect of blue-shift observed in the absorption spectra increased with increasing the molar ratio of fluorene moiety. The band gap were 1.65 eV,1.72 eV,1.82eV and 1.89eV respectively when 0 mol%,25 mol%,50 mol% and 75mol% of fluorene moiety were induced into the polymer. At the same time, the HOMO levels of these polymers were significantly lowered which is desired property to improve the Voc of solar cell. The optical and electrochemical properties of these polymers are consistent with the molecular simulation results. By simply changing the composition between fluorene and cyclopentaditiophene in the polymer, we could easily tune the HOMO level and band gap of polymer. The resulting polymers have potential to improve the efficiency of solar cell.
We also synthesized two molecules, i.e. W4 and W4-F, as the surface modifier of TiO2 nanorod. By modifying the surface of TiO2 nanorod with W4 or W4-F, the Jsc(short circuit current density)of device made from W4 or W4-F modified TiO2 nanorod increased substantially as compared with that using unmodified TiO2 nanorod. The power conversion efficiency increased significantly from 0.44% to 0.75% as the surface modifier was changed from pyridine to W4 or W4-F. The improvement of efficiency was due to the reducing of charge recombination and enhance of charge separation via the linkage of W4 and W4-F on the surface of TiO2 nanorod. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:58:49Z (GMT). No. of bitstreams: 1 ntu-99-R97549026-1.pdf: 2745773 bytes, checksum: 895774da2eccde26ad5e7509ea7514d2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 總目錄
摘要 iii Abstract iv 第一章 緒論 1 1.1 引言 1 1.2 研究動機 3 第二章 文獻回顧與理論基礎 6 2.1 有機太陽能電池運作機制 6 2.2 低能隙導電高分子於有機太陽能電池之應用 11 2.2.1 低能隙導電高分子的原理 11 2.2.1 低能隙導電高分子用於有機太陽能電池之概況 17 2.2.3 低能隙導電高分子的合成 26 2.3 TiO2表面改質劑於有機太陽能電池之應用 29 2.3.1 導電高分子混摻TiO2之太陽能電池研究 29 2.3.2 表面改質於導電高分子混摻TiO2之太陽能電池研究 30 第三章 實驗 34 3.1 實驗藥品 34 3.2 實驗儀器 36 3.3 實驗步驟 37 3.3.1 溶劑的純化 37 3.3.2 共聚物之單體的合成與純化 37 3.3.2.1 Cyclopentadithiophene (CPDT)的合成與純化 37 3.3.2.2 9,9-dioctylfluorene (F8) 的合成與純化 40 3.3.3 共聚物的聚合與純化 41 3.3.3.1 PCPDTBT的聚合與純化 41 3.3.3.2 C3F1BT的聚合與純化 41 3.3.3.2 C1F1BT的聚合與純化 41 3.3.3.2 C1F3BT的聚合與純化 42 3.3.3.2 F8BT的聚合與純化 42 3.3.4 TiO2表面改質劑合成與純化 43 3.3.4.1 2-cyano-3-(5-(7-(thiophen-2-yl)benzothiadiazol-4-yl)thiophen-2-yl)acrylic acid(W4)的合成與純化 43 3.3.4.2 W4衍生物的合成與純化 44 第四章 結果與討論 46 4.1 共聚物的單體合成與鑑定 46 4.1.1 CPDT合成之1H NMR鑑定 46 4.1.2 F8合成之1H NMR鑑定 47 4.2 共聚物聚合與化學結構鑑定 49 4.2.1 共聚物分子量之分布 49 4.2.1.2 共聚物的1H NMR結果與分析 50 4.3 共聚物熱性質鑑定 52 4.3 共聚物光電性質鑑定 54 4.3.1 共聚物吸收光譜結果與分析 54 4.3.2 共聚物氧化還原電位結果與分析 56 4.4 TiO2表面改質劑化學結構鑑定 60 4.5 TiO2表面改質劑光學與電化學性質鑑定 64 4.5.1 W4與其衍生物吸收光譜結果與分析 64 4.5.2 W4與其衍生物氧化還原電位結果與分析 65 4.6 TiO2表面改質劑於太陽能電池上的表現 66 第五章 結論 68 第六章 建議與未來工作 69 參考文獻 70 圖目錄 Figure 1.1 Structure of P3HT and PCBM. 1 Figure 1.2 Schematic representations of P3HT/TiO2 nanorod hybrid after interface modification and chemical structures of different interfacial molecules of ACA, CuPc-dye, and N3-dye molecules respectively [C. W. Chen and W. F. Su, 2009]. 2 Figure 1.3 Chemical structure and the device parameters of (a) PCPDTBT [Veenstra, 2007]. (b) PF10TBT [Bazan, 2007]. 3 Figure 1.4 Synthesis of CPDT-F based copolymers. 4 Figure 1.5 (a) Chemical structures of W4 and W4-F. (b) Schematic representation of TiO2 nano rod after interface modification with W4 and W4-F. 5 Figure 2.1 Device of organic solar cell. 6 Figure 2.2 Charge generation in organic solar cells [BOER, 2008]. 7 Figure 2.3 The solar spectrum under AM 1.5 [BOER, 2008]. 8 Figure 2.4 Energy diagram of an organic solar cell with a donor-acceptor interface. 9 Figure 2.5 (a) Contour plot where the x- and y-axes are the bandgap and the LUMO level of the donor [Heeger, 2006]. (b) Band gap alignment for TiO2 and PCBM respectively. 10 Figure 2.6 Energy diagram of P3HT [Meijer, 2001 ]. 11 Figure 2.7 (a) Structural changes in polythiophene [Meijer, 2001 ]. (b) δ bond rotation. 13 Figure 2.8 Structure of P3HT and poly(4,4-dihexylcyclopentadithiophenes) [Sheffield, 2003]. 13 Figure 2.9 Structure of Aromatic form and quinoid form. 14 Figure 2.10 Aromatic and quinoid resonance forms of poly(p-phenylene), poly- (p-phenylenevinylene), polythiophene and polyisothianaphthene [C. S. Hsu, 2009]. 15 Figure 2.11 (a) Orbital interactions of donor and acceptor units leading to a smaller band gap in a D-A conjugated polymer [C. S. Hsu, 2009]. (b) Resonance of D-A polymer [Meijer, 2001 ]. 16 Figure 2.12 Structure of electron donors and electron acceptors. 17 Figure 2.13 Energy-level diagram of TPT-based copolymers [C. Ting, 2009]. 18 Figure 2.14 Series of novel low band gap conducting polymers. 19 Figure 2.15 The mechanism of Stille coupling[Lin, 2009]. 26 Figure 2.16 The mechanism of Suzuki coupling[Lin, 2009]. 27 Figure 2.17 Polymerization of alternating copolymers by cross coupling. 28 Figure 2.18 (a) TAS signals of annealed devices incorporating un-treated (black line) and Z907 treated (grey line) nanorods. (b) J–V characteristics of blend devices incorporating 60 vol% of nc-TiO2 nanorods before (black lines) and after ligand exchange with Z907 (grey lines) [J. Nelson, 2008]. 30 Figure 2.19 (a) PL intensity of the hybrid materials with different surface ligand molecules. (b) Current-voltage characteristics of the photovoltaicdevices based on different surface ligand molecules under AM 1.5 (100 mW/cm2) irradiation. [C. W. Chen and W. F. Su, 2008] 31 Figure 2.20 Charge recombination rate constant krec versus light intensity at Voc determined by TOCVD measurement. The inset schematically depicts the recombination mechanism and TOCVD setup. [C. W. Chen, 2009] 32 Figure 2.21 (a) Schematic of bilayer TiO2 /polymer devices. (b) Schematics of band diagram of TiO2 /polymer cell. (c) J-V curves of TiO2 / P3HT bilayer devices. (d) Voc and Jsc of devices shown in (a). [M. D. McGehee, 2007]. 33 Figure 4.2 Synthesis of CPDT monomer 46 Figure 4.3 H NMR spectra of compound 5. 47 Figure 4.4 1H NMR spectra of compound 6. 48 Figure 4.5 Synthesis of polymers. 49 Figure 4.6 1H NMR spectrum of copolymers 51 Figure 4.7 (a) TGA thermogram of copolymers. (b) DSC thermograms of copolymers. 53 Figure 4.8 (a) Absorbance of polymers in solvent. (b) Absorbance of polymers in solid state. 55 Figure 4.9 Simulated UV-vis absorption spectra of fluorene and cyclopenta- ditiophene based copolymers. 56 Figure 4.10 (a) Cyclic voltammograms of the electrochemical oxidation and reduction of copolymers in 0.05 M TBAPF6 in CH2Cl2 at a sweep rate of 100 mV/s. (b) Band structure of polymers. 57 Figure 4.11 Simulated band structures of fluorene and cyclopentaditiophene based copolymers. 58 Figure 4.12 Synthesis of W4. 60 Figure 4.13 Synthesis of W4-F. 60 Figure 4.14 1H NMR spectra of W4. 61 Figure 4.15 IR spectrum of W4. 62 Figure 4.16 1H NMR of W4-F. 63 Figure 4.17 IR spectrum of W4-F. 63 Figure 4.18 Absorption spectraW4 and W4-F. 64 Figure 4.19 Cyclic voltammograms of the electrochemical oxidation and reduction of W4 and W4-F. 65 Figure 4.20 (a). Band structure of P3HT、W4-F、W4 and TiO2. (b) J–V characteristics of photovoltaic devices. (c) Summary of photovoltaic characteristics. 67 Figure 5.1 Structure of new novel low band gap polymers. 69 Figure 5.2 Structure of new novel surface modifiers. 69 表目錄 Table 2.1 Band structure data and device performances of fluorene based polymer 20 Table 2.2 Band structure data and device performances of carbazole based polymer 20 Table 2.3 Band structure data and device performances of CPDT based polymer 21 Table 2.4 Band structure data and device performances of thiophene based polymer 22 Table 2.5 Band structure data and device performances of BDT based polymer 23 Table 2.6 Band structure data and device performances of TPT based polymer 24 Table 2.7 Band structure data and device performances of DPP based polymer 25 Table 3.1 List of reagents used for monomers and polymers synthesis (cont.). 34 Table 3.2 List of all instruments used in this work 36 Table 4.1 Molecular weight and distribution of copolymers 50 Table 4.2 The product compositions of copolymers with different feeding ratio 51 Table 4.3 Thermal properties of copolymers 54 Table 4.4 Optical properties and electrochemical data of polymers 59 Table 4.5 The simulated data of band structures and band gaps of fluorene and cyclopentaditiophene based copolymers. 59 Table 4.6 Optical and electrochemical properties of W4 and W4-F. 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | Stille coupling | zh_TW |
| dc.subject | 低能隙導電高分子 | zh_TW |
| dc.subject | 表面改質劑 | zh_TW |
| dc.subject | Stille coupling | en |
| dc.subject | low band gap conducting polymer | en |
| dc.subject | surface modifiers | en |
| dc.title | 用於高分子/二氧化鈦混摻系統太陽能電池的新穎低能隙導電高分子及表面改質劑的合成與鑒定 | zh_TW |
| dc.title | Synthesis and Characterization of Novel Low Band Gap Conducting Polymers and Surface Modifiers for Hybrid Polymer/TiO2 Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙基揚(Chi-Yang Chao),蔡豐羽(Feng-Yu Tsai),鄭國忠(Kuo-Chung Cheng) | |
| dc.subject.keyword | 低能隙導電高分子,表面改質劑,Stille coupling, | zh_TW |
| dc.subject.keyword | low band gap conducting polymer,surface modifiers,Stille coupling, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
