請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23286完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟 | |
| dc.contributor.author | Mu-Chieh Lo | en |
| dc.contributor.author | 羅牧杰 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:58:47Z | - |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-09-13 | |
| dc.identifier.citation | [1] D. Gabor, 'A new microscopic principle,' Nature, vol. 161, pp. 777-778, 1948.
[2] L. Lipton, Foundations of the stereoscopic cinema: a study in depth: Van Nostrand Reinhold, 1982. [3] T. koshi, Three-dimensional imaging techniques: Academic Press, 1976. [4] G. Lippmann, 'La photographie integrale,' CR Acad. Sci, vol. 146, p. 446!V451, 1908. [5] L. Byoungho, P. Jae-Hyeung, M. Sung-Wook, J. Sungyong, and C. Heejin, 'Three-dimensional image recognition and display using lens arrays,' in Lasers and Electro-Optics, 2003. CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on, 2003, p. 196 Vol.1. [6] B. Javidi and J. Ju-Seog, 'Improved depth of focus, resolution, and viewing angle integral imaging for 3D TV and display,' in Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE, 2003, pp. 726-727 vol.2. [7] H. Arimoto and B. Javidi, 'Integral three-dimensional imaging system by digital image processing,' in Lasers and Electro-Optics Society 2000 Annual Meeting. LEOS 2000. 13th Annual Meeting. IEEE, 2000, pp. 752-753 vol.2. [8] A. Stern and B. Javidi, 'Three-Dimensional Image Sensing, Visualization, and Processing Using Integral Imaging,' Proceedings of the IEEE, vol. 94, pp. 591-607, 2006. [9] J. Rosen and D. Abookasis, 'Seeing through biological tissues using the fly eye principle,' Opt. Express, vol. 11, p. 3605!V3611, 2003. [10] F. Okano, J. Arai, H. Hoshino, and I. Yuyama, 'Three-dimensional video system based on integral photography,' Optical Engineering, vol. 38, p. 1072, 1999. [11] S. Min, S. Jung, J. Park, and B. Lee, 'Three-dimensional display system based on computer-generated integral photography,' 2001, p. 187. [12] H. Liao, M. Iwahara, N. Hata, and T. Dohi, 'High-quality integral videography using a multiprojector,' Opt. Express, vol. 12, pp. 1067-1076, 2004. [13] P. Ambs, L. Bigue, Y. Fainman, R. Binet, J. Collineau, J. Lehureau, and J. Huignard, 'Image reconstruction using electrooptic holography,' 2003. [14] F. Okano, J. Arai, K. Mitani, and M. Okui, 'Real-Time Integral Imaging Based on Extremely High Resolution Video System,' Proceedings of the IEEE, vol. 94, pp. 490-501, 2006. [15] R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, 'Enhanced depth of field integral imaging with sensor resolution constraints,' Opt. Express, vol. 12, pp. 5237-5242, 2004. [16] J. Arai, H. Kawai, and F. Okano, 'Microlens arrays for integral imaging system,' Applied optics, vol. 45, pp. 9066-9078, 2006. [17] M. Land and D. Nilsson, Animal eyes: Oxford University Press, USA, 2002. [18] R. Gonzalez and E. Richard, 'Woods, Digital image processing,' Addison Wisley, 1992. [19] J. Jang and B. Javidi, 'Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,' Optical Engineering, vol. 42, p. 1869, 2003. [20] F. Jin, J. Jang, and B. Javidi, 'Effects of device resolution on three-dimensional integral imaging,' Optics letters, vol. 29, pp. 1345-1347, 2004. [21] L. Yin and S. Seltzer, 'Tomographic decoding algorithm for a nonoverlapping redundant array,' Applied optics, vol. 32, pp. 3726-3735, 1993. [22] J. Goodman, Introduction to Fourier optics: Roberts & Company Publishers, 2005. [23] B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Appl. Opt, vol. 43, pp. 315-323, 2004. [24] J. Jang and B. Javidi, 'Three-dimensional integral imaging of micro-objects,' Optics letters, vol. 29, pp. 1230-1232, 2004. [25] A. Jones, B. Milthorpe, H. Averdunk, A. Limaye, T. Senden, A. Sakellariou, A. Sheppard, R. Sok, M. Knackstedt, and A. Brandwood, 'Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging,' Biomaterials, vol. 25, pp. 4947-4954, 2004. [26] M. Levoy and P. Hanrahan, 'Light field rendering,' 1996, p. 42. [27] M. Abramowitz and M. Davidson, 'Introduction to Microscopy,' Molecular Expressions. http://micro. magnet. fsu. edu/primer/anatomy/introduction. html. Retrieved on, pp. 08-22, 2007. [28] R. Egerton, Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM: Springer, 2005. [29] M. Neil, R. Juskaitis, and T. Wilson, 'Method of obtaining optical sectioning by using structured light in a conventional microscope,' Optics letters, vol. 22, pp. 1905-1907, 1997. [30] E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, 'Breaking the diffraction barrier: optical microscopy on a nanometric scale,' Science, vol. 251, p. 1468, 1991. [31] S. Bradbury, An introduction to the optical microscope: Oxford University Press [for] Royal Microscopical Society, 1989. [32] E. Adelson and J. Wang, 'Single lens stereo with a plenoptic camera,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, pp. 99-106, 1992. [33] B. Javidi and F. Okano, Three-dimensional television, video and display technology: Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2002. [34] R. Ng, 'Fourier slice photography,' 2005, p. 744. [35] H. Yamanoue, M. Okui, and F. Okano, 'Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, pp. 744-752, 2006. [36] S. Seebacher, W. Osten, and W. Jueptner, 'Measuring shape and deformation of small objects using digital holography,' 1998, p. 104. [37] T. Zhang and I. Yamaguchi, 'Three-dimensional microscopy with phase-shifting digital holography,' Opt. Lett., vol. 23, pp. 1221-1223, 1998. [38] I. Yamaguchi and T. Zhang, 'Phase-shifting digital holography,' Opt. Lett., vol. 22, pp. 1268-1270, 1997. [39] F. Okano, H. Hoshino, J. Arai, and I. Yuyama, 'Real-time pickup method for a three-dimensional image based on integral photography,' Appl. Opt., vol. 36, pp. 1598-1603, 1997. [40] J. Rosen and D. Abookasis, 'Seeing through biological tissues using the fly eye principle,' Opt. Express, vol. 11, pp. 3605-3611, 2003. [41] H. Arimoto and B. Javidi, 'Integral three-dimensional imaging with digital reconstruction,' Opt. Lett., vol. 26, pp. 157-159, 2001. [42] S.-H. Hong, J.-S. Jang, and B. Javidi, 'Three-dimensional volumetric object reconstruction using computational integral imaging,' Opt. Express, vol. 12, pp. 483-491, 2004. [43] Y. Frauel and B. Javidi, 'Digital Three-Dimensional Image Correlation by Use of Computer-Reconstructed Integral Imaging,' Appl. Opt., vol. 41, pp. 5488-5496, 2002. [44] B.-H. Lee, S.-Y. Jung, S.-W. Min, and J.-H. Park, 'Study of Three-dimensional Display System Based on Computer-generated Integral Photography,' J. Opt. Soc. Korea, vol. 5, pp. 43-48, 2001. [45] J.-S. Jang and B. Javidi, 'Three-dimensional integral imaging of micro-objects,' Opt. Lett., vol. 29, pp. 1230-1232, 2004. [46] B. Javidi, I. Moon, S. Yeom, and E. Carapezza, 'Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,' Opt. Express, vol. 13, pp. 4492-4506, 2005. [47] J.-S. Jang and B. Javidi, 'Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,' Opt. Lett., vol. 27, pp. 324-326, 2002. [48] V. Lin, H.-C. Wei, H.-T. Hsieh, J.-L. Hsieh, and G.-D. J. Su, 'Design and fabrication of long-focal-length microlens arrays for Shack--Hartmann wavefront sensors,' Micro & Nano Letters, vol. 6, pp. 523-526, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23286 | - |
| dc.description.abstract | 本論文演示了一微成像系統,可採集微結構的表面形貌並利用數位計算重建三維立體影像。簡言之,本系統利用微透鏡陣列和光學顯微鏡以及光偵測器擷取三維景像的元素影像,其後經由源自幾何光學的模擬演算法,模傲光學重建的機制,在計算機上重建出三維景像的立體畫素。其中,重建之立體畫素皆由光偵測器記錄的元素二維畫素計算所得。而顯示用的微透鏡陣列上不同視點觀察到的影像,亦可藉由模擬針孔微透鏡陣列進一步演算重建,即假想光束從逆方向放射,此演算法奠基於物理上光線的運作道理,特別是光學重建部份。此外,為了確認演算法,也展示三維視覺與立體畫素重建的實驗結果,與成像系統互相驗證表現。 | zh_TW |
| dc.description.abstract | In this thesis a three-dimensional (3D) imaging technique that can sense a 3D micro-object and computationally reconstruct it as a 3D volumetric image is demonstrated. Visualization of the 3D scene is carried out by obtaining elemental images optically using a pickup microlens array associated with an optical microscope and a light detector array. To reconstruct the volume pixels of the scene, it is accomplished by computationally simulating optical reconstruction according to geometrical optics. The entire pixels of the recorded elemental images contribute to volumetric reconstruction of the 3D scene. Images displayed at arbitrary viewpoints from the display microlens array are computed and reconstructed by back propagating the elemental images through a computer synthesized pinhole microlens array. The algorithm based on the nature of optical reconstruction is applied. We present experimental results of 3D image sensing and volume pixel reconstruction to test and verify the performance of the algorithm and the imaging system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:58:47Z (GMT). No. of bitstreams: 1 ntu-100-R96941029-1.pdf: 2679603 bytes, checksum: b4a9253242bf545ce394dfd3a96fc3ea (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction 1 Chapter 2 Computational Reconstruction 6 2.1 Introduction 6 2.2 Operation Principle 10 2.3 Experimental Setup 11 2.4 Result and Discussion 14 2.5 Conclusion 20 Chapter 3 Observation of Microstructures 22 3.1 Introduction 22 3.2 Operation Principle 26 3.3 Experimental Setup 27 3.4 Result and Discussion 29 3.5 Conclusion 33 Chapter 4 Implementing 3D Micro Digital Reconstruction by MLA 35 4.1 Introduction 35 4.2 Computational Reconstruction of Integral Imaging 39 4.3 Experimental Results and Discussions 45 4.4 Conclusion 51 Chapter 5 Conclusion 65 Chapter 6 Reference 66 | |
| dc.language.iso | en | |
| dc.subject | 顯微術 | zh_TW |
| dc.subject | 微透鏡陣列 | zh_TW |
| dc.subject | 全景圖像 | zh_TW |
| dc.subject | 立體視覺 | zh_TW |
| dc.subject | microlens array | en |
| dc.subject | integral imaging | en |
| dc.title | 微透鏡陣列實現全景圖像用於微結構之觀測 | zh_TW |
| dc.title | Observation of Microstructure on Integral Imaging by the Use of Microlens Array | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖,蔡睿哲 | |
| dc.subject.keyword | 微透鏡陣列,全景圖像,立體視覺,顯微術, | zh_TW |
| dc.subject.keyword | microlens array,integral imaging, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-09-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
