請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23276完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂宗昕(Chung-Hsin Lu) | |
| dc.contributor.author | Tsung-Han Lee | en |
| dc.contributor.author | 李宗翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:51:12Z | - |
| dc.date.copyright | 2009-07-29 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-27 | |
| dc.identifier.citation | [1] M. D. Archer and R. Hill, The past and present. In: Clean electricity from photovoltaics, Imperial College Press, London, 2001.
[2] M. A. Green, K. Emery, D. L. King, S. Igari, W. Warta, Prog. Photovolt: Res. Appl., 11, (2003), 347-352. [3] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science, 285, (1999),692-698. [4] A. Goetzberger, J. Luther, G. Willeke, Sol. Energy Mater. Sol. Cells, 74, (2002), 1-11. [5] H. J. Lewerenz, H. Jungblut, Photovoltaik. Grundlagen und Anwendungen., Heidel-berg: Springer-Verlag, Berlin, 1995. [6] A. Goetzberger, C. Hebling, Sol. Energy Mater. Sol. Cells, 62, (2000), 1-19. [7] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, Prog. Photovolt: Res. Appl., 16, (2008), 235-239. [8] J. S. Ward, K. Ramanathan, F. S. Hasoon, T. J. Coutts, J. Keane, M. A. Contreras, T. Moriarty, R. Noufi, Prog. Photovolt: Res. Appl., 10, (2002), 41-46. [9] V. M. Fthenakis, S. C. Morris, P. D. Moskowitz, D. L. Morgan, Prog. Photovolt.: Res. Appl., 7, (1999), 489-497. [10] F. Kessler, D. Rudmann, Solar Energy, 77, (2004), 685-695. [11] J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, H. W. Schock, J. Phys. Chem. B, 104, (2000), 4849-4862. [12] T. Wada, N. Kohara, S. Nishiwaki, T. Negami, Thin Solid Films 387, (2001), 118-122. [13] D. Schmid, M. Ruckh, H. W. Schock, Sol. Energy Mater. Sol. Cells, 41-2, (1996), 281-294. [14] H. W. Schock, U. Rau, Physica B, 1081, (2001), 308-310. [15] J. F. Guillemoles, P. Cowache, A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel, D. Lincot, J. Appl. Phys., 79, (1996), 7293-7302. [16] R. J. Schwartz, J. L. Gray, Conf. Rec. 21st IEEE Photovolt. Spec. Conf., IEEE, New York, 570,(1990). [17] C. Heske, D. Eich, R. Fink, E. Umbach, T. van Buuren, C. Bostedt, L. J. Terminello, S. Kakar, M. M. Grush, T. A. Callcott, F. J. Himpsel, D. L. Ederer, R. C. C. Perera, W. Riedl, F. Karg, Appl. Phys. Lett., 74, (1999), 1451-1453. [18] T. Nakada, A. Kunioka, Appl. Phys. Lett., 74, (1999), 2444-2446. [19] T. Nakada, T. Kume, T. Mise, A. Kunioka, Jpn. J. Appl. Phys., 37, (1998), L499-L501. [20] F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, A. N. Tiwari, Thin Solid Films, 293, (2002), 403-404. [21] F. J. Haug, D. Rudmann, H. Zogg, A. N. Tiwari, Thin Solid Films,431, (2003), 431-432. [22] Powder Diffraction Files, Card 40-1487, International Centre for Diffraction Data, Newtown Square, Pennsylvania, PA. [23] J. M. Merino, J. L. Martin de Vidales, S. Mahanty, R. Diaz, F. Rueda, and M. Leon, J. Appl. Phys., 5610 (1996), 5610-5616. [24] Powder Diffraction Files, Card 23-0207, International Centre for Diffraction Data, Newtown Square, Pennsylvania, PA. [25] B. J. Stanbery, Crit. Rev. Solid State Mater. Sci., 27, (2002), 73-117. [26] R. W. Birkmire, Sol. Energy Mater. Sol. Cells, 65, (2001), 17-28. [27] M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas, R. Noufi, Prog. Photovolt: Res. Appl., 13, (2005), 209-216. [28] W. Liu, Y. Sun, W. Li, C. Li, F. Li, J. Tian, Appl. Phys. A, 88, (2007), 653-656. [29] L. Kaupmees, M. Altosaar, O. Volubujeva, E. Mellikov, Thin Solid Films, 515, (2007), 5891– 5894. [30] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp, , Chem. Mater., 15, (2003), 3142-3147. [31] M. Kaelin, D. Rudmann, F. Kurdesau , T. Meyer, H. Zogg, A. N. Tiwari, Thin Solid Films, 431–432, (2003), 58–62. [32] A. N. Tiwari, S. Blunier, M. Filzmoser, H. Zogg, D. Schmid, H. W. Schock , Appl. Phys. Lett., 65, (1994), 3347-3349. [33] H. Takenoshita, Solar Cells, 16, (1986), 65-89. [34] O. Igarashi, Journal of Crystal Growth, 143 (1994), 213-220. [35] M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, R. Noufi, Proc. 1st World Conf. Photovolt. Energy Conv., IEEE, Piscataway, NJ., 68 (1994). [36] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, Appl. Phys. Lett., 65, (1994), 198-200. [37] S. Chaisitsak, A. Yamada, M. Konagai, Jpn. J. Appl. Phys., 41, (2002), 507-513. [38] F. H. Karg, Sol. Energy Mater. Sol. Cells 66, (2001), 645-653. [39] V. Probst, W. Stetter, W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K. D. Ufert, B. Freienstein, H. Cerva, F. Karg, Thin Solid Films, 387, (2001), 262-267. [40] S. Ahn, C. Kim, J. Yun, J. Lee, K. Yoon, Solar Energy Materials & Solar Cells, 91, (2007), 1836-1841. [41] S. Ahn, K. Kim, K. Yoon, Colloids and Surfaces A: Physicochem. Eng. Aspects, 313-314, (2008), 171-174. [42] S. Ahn, K. Kim, Y. Chun, K, Yoon, Thin Solid Films, 515, (2007), 4036-4040. [43] Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie, Y. Qian, Inorg. Chem., 39, (2000), 2964-2965. [44] L. Zhang, J. Liang, S. Peng, Y. Shi, J. Chen , Materials Chemistry and Physics, 106, (2007), 296-300. [45] Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou, X. Liu, Inorg. Chem., 39, (2000), 1606-1607. [46] J. Xiao, Y. Xie, Y. Xiong, R. Tang, Y. Qian, J. Mater. Chem., 11, (2001), 1417-1420. [47] S. Han, M. Kong, Y. Guo, M. Wang, Materials Letters, 63, (2009), 1192-1194. [48] C. H. Lu, C. H. Wu, R. B. Kale, J. Hazard. Mater., 154, (2008), 649-654. [49] Y. Wan, J. Y. Lee, J. Power sources, 144, (2005), 220-225. [50] C. H. Lu, C. H. Yen, Mater. Lett., 33, (1997), 129-132. [51] K. S. Tun, M. Gupta, Compos. Sci. Technol., 67, (2007), 2657-2664. [52] Hoar T. P., Schulman J. H., Nature, 152, (1943), 102-103. [53] T. Masui, K. Fujiwara, K. I. Machida, G. Y. Adachi, T. Sakata, H. Mori, Chem. Mater., 9, (1997), 2197-2204. [54] J. Wang, J. Fang, S. C. Ng, L. M. Gan, C. H. Chew, X. Wang, Z. Shen, J. Am. Ceram. Soc., 82, (1999), 873-881. [55] C. L. Chang, H. S. Fogler, Langmuir, 13, (1997), 3295-3307. [56] C. Beck, W. Hartl, R. Hempelmann, J. Mater. Res., 13, (1998), 3174-3180. [57] B. Lemaire, P. Bothorel, D. Roux, J. Phys. Chem., 87, (1983), 1023-1028. [58] J. Zhang, B. Han, M. Liu, D. Liu, Z. Dong, J. Lin, D. Li, J. Wang, B. Dong, H. Zhao, L. Rong, J. Phys. Chem. B, 107, (2003), 3679-3683. [59] X. Zhang, K. Y. Chan, Chem, Mater, 45, (2003), 451-459. [60] K. Shinoda, B. Lindman, Langmuir, 3, (1987), 135-149. [61] M. Kemell, M Ritala, M, Leskela, Crit. Rev. Solid State Mat. Sci., 30, (2005), 1-31. [62] J. M. Merino, J. L. M. de Vidales, S. Mahanty, R. Díaz, F. Rueda, M. León, J. Appl. Phys., 80, (1996), 5610-5616. [63] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, Prog. Photovolt: Res. Appl., 16, (2008), 235-239. [64] V. Probst, W. Stetter, W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K.D. Ufert, B. Freienstein, H. Cerva, F.H. Karg, Thin solid films, 387, (2001), 262-267. [65] C. Beck, W. Hartl, R. Hempelmann, J. Mater. Res., 13, (1998), 3174-3180. [66] B. Lemaire, P. Bothorel, D. Roux, J. Phys. Chem., 87, (1983), 1023-1028. [67] K. Shinoda, B. Lindman, Langmuir, 3, (1987), 135-149. [68] T. Wada, T. Negami, M. Nishitani, J. Mater. Res., 9, (1994), 658-662. [69] T. V. Tavrina, E.I. Rogacheva, J. Phys. Chem. Solids, 64, (2003), 1917-1921. [70] Y. G. Chun, K. H. Kim, K. H. Yoon, Thin Solid Films, 480-481, (2005), 46-49. [71] Y. H. Yang, Y. T. Chen, J. Phys. Chem. B, 110, (2006), 17370-17374. [72] W. L. Lu, Y. S. Fu, B. H. Tseng, J. Phys. Chem. B, 69, (2008), 637-640. [73] P. Lidstorm, J. Tierney, B. Wathey, J. Westman, Tetrahedron, 57, (2001), 9225-9283. [74] J. G. P. Binner, N. A. Hassine, T. E. Cross, J. Mater. Sci., 30, (1995), 5389-5393. [75] C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, D. M. P. Mingos, Chem. Soc. Rev., 27, (1998), 213-223. [76] D. M. P. Mingos, A. G. Whittaker, J. Chem. Soc. Dalton Trans., 18, (1992), 2751-2752. [77] B. Li, Y. Xie, J. Huang, Y. Qian, Adv. Mater., 11, (1999), 1456-1459. [78] M. de Dios, F. Barroso, C. Tojo a, M. A. Lopez-Quintel, J. Colloid Interface Sci., 333, (2009) 741-748. [79] Y. D. Li, H. W. Liao, Y. Ding, Y. T. Qian, L. Yang, G. E. Zhou, Chem. Mater., 10, (1998) 2301-2303. [80] V. Uskokovic, M. Drofenik, Adv. Colloid Interface Sci., 133, (2007), 23-34. [81] D. Chen, S. Liu, J. Li, N. Zhao, C. Shi, X. Du, J. Sheng, J. Alloy. Compd., 475, (2009), 494-500. [82] W. Zhang, X. Qiao, J. Chen, Colloid Surf. A-Physicochem. Eng. Asp., 299, (2007), 22-28. [83] C. H. Lu, H. C. Wang, J. Mater. Sci., 42, (2007), 752-758. [84] X. Li, G. He, G. Xiao, H. Liu, M. Wang, J. Colloid Interface Sci., 333, (2009), 465-473 [85] C. Chang, J. Ting, Thin Solid Films, 517, (2009), 4174-4178. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23276 | - |
| dc.description.abstract | 本研究成功利用微波溶熱法於200度時合成銅銦硒(CuInSe2)之薄膜太陽能電池吸收層材料,藉由此方法可在非常短的時間內得到單相銅銦硒粉體。此結果是由於在微波電場(microwave field)的作用下,反應物的移動率(mobility)會提高,因此會使得反應速率提升。在此研究中,硒化銅(CuSe)為反應的中間產物,且當反應溫度提升時,銅銦硒的相會逐漸顯現。藉由微波溶熱法所製備的樣品型態為片狀和球狀粉體,且片狀粉體的比例會隨著反應溫度上升而提高。從這部分研究中可發現,將溶熱法和微波加熱系統結合,可大幅促進片狀粉體的生成。
本研究第二部分使用微乳膠溶熱法合成銅銦硒粉體。微乳膠系統中形成的微胞可視為個別的奈米級反應器,可以限制銅銦硒粉體的生長。由於反應物間的距離被拉近,使得反應速率增加,因此縮短了合成所需的時間。一般微乳膠製程,需要在400至500oC排膠,在本研究結合了溶熱法,使得反應所需溫度可大幅降至200oC。由微乳膠溶熱法所製備的粉體呈現圓形粒子,且和傳統溶熱法相比,粉體粒徑變小很多,大約10-15奈米。也發現當反應溫度提高時,樣品晶相及粉體大小也都會提高。 | zh_TW |
| dc.description.abstract | Copper indium diselenide (CuInSe2) powders were successfully synthesized using the microwave-assisted solvothermal process at 200oC within short time. The reaction time for preparing single-phased CuInSe2 was significantly shortened with the developed microwave treatment. The microwave field enhanced the mobility of the reactants, thereby resulting in the accelerated reaction rate. CuSe was the major intermediate product during reactions, and the phase of CuInSe2 was gradually formed as the reaction temperature and time were raised. The prepared powders exhibited plate-like and spherical shapes, and the fraction of plate was increased with increasing reaction time. The solvothermal route combined with the microwave heating system was found to significantly promote the formation of plate-like particles.
CuInSe2 powders were successfully prepared using the water-in-oil microemulsion-mediated solvothermal process. The formed micelles in the water-in-oil microemulsion system acted as nanosized reactors to restrict the growth of CuInSe2 powders. The distances between the constituent reactants were shortened, thereby leading to raise the reaction rate and shorten the required reaction time. In the microemulsion process, the obtained powders must be heated to 400 – 500oC for removing the residual organics. The reaction temperature was significantly lowered to 200oC with the assistance of the solvothermal treatment. The microemulsion-derived CuInSe2 powders exhibited a spherical shape and were much smaller than the powders prepared via the conventional solvothermal process. The particle sizes of the obtained powders were around 10–15 nm. As the reaction temperature was elevated, the crystallinity and the particle size were also increased. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:51:12Z (GMT). No. of bitstreams: 1 ntu-98-R96524083-1.pdf: 4134499 bytes, checksum: 8eef59aea9085ad4154f5c51a6aebcbc (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Research object 1 1.2 Photovoltaic technology 3 1.2.1 Evolution of Solar Cells 3 1.2.2 Thin-film Solar Cells 4 1.3 CIS-based solar cells 7 1.3.1 Principle of Operation 7 1.3.2 Structure of CIG-based Solar Cells 9 1.3.3 Crystal Structure and Band Gap of Absorber Material 11 1.4 Thin Film Deposition Methods for CIS-based absorber 12 1.5 Synthesis of CIS powders 13 1.6 Introduction to Microwave-assisted Method 14 1.6.1 Heating Mechanism of Microwave Method 14 1.7.1 Operation Principle of Microemulsion-based Method 16 Chapter 2 Investigation on the Formation of CuInSe2 Particles Via the Microwave-assisted Solvothermal Process 31 2.1 Experimental 31 2.1.1 Synthesis of CuInSe2 particles Via the Microwave-assisted Solvothermal Process 31 2.1.2 Characterization of CuInSe2 Particles 32 2.2 Results and Discussion 32 2.3.1 Cu2+ to In3+ molar ratio effects on the formation of CuInSe2 powders 32 2.3.2 Effects of the reaction conditions on the microstructures of CuInSe2 powders 34 2.3.3 Growth process of CuInSe2 particles 38 Chapter 3 Investigation on the Formation of CuInSe2 Particles Via the Microemulsion-mediated Solvothermal Process 48 3.1 Experimental 48 3.1.1 Synthesis of CuInSe2 particles Via the Microemulsion-mediated Solvothermal Process 48 3.1.2 Characterization of CuInSe2 Particles 49 3.2 Results and Discussion 49 3.2.1 Water/oil volume ratio effects on the formation of CuInSe2 50 3.2.2 Effects of the reaction temperatures and durations on the microstructures of CuInSe2 powders 51 3.2.3 Formation mechanism of CuInSe2 55 Chapter 4 Conclusions 67 References 70 | |
| dc.language.iso | en | |
| dc.subject | 奈米粉體 | zh_TW |
| dc.subject | 微波 | zh_TW |
| dc.subject | 微乳膠 | zh_TW |
| dc.subject | 溶熱法 | zh_TW |
| dc.subject | 硒化銅銦 | zh_TW |
| dc.subject | CIS | en |
| dc.subject | nanoparticles | en |
| dc.subject | microwave | en |
| dc.subject | microemulsion | en |
| dc.subject | solvothermal | en |
| dc.title | 太陽電池吸收層材料之銅銦硒粉體製備與特性分析 | zh_TW |
| dc.title | Preparation and Characterization of
Copper Indium Diselenide Powders Used as the Absorber of Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴怡德(Clifford Yi-Der Tai),吳紀聖(Jeffrey Chi-Sheng Wu) | |
| dc.subject.keyword | 微波,微乳膠,溶熱法,硒化銅銦,奈米粉體, | zh_TW |
| dc.subject.keyword | microwave,microemulsion,solvothermal,CIS,nanoparticles, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
