Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23263
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃麗華
dc.contributor.authorZhe-Kang Liaoen
dc.contributor.author廖哲康zh_TW
dc.date.accessioned2021-06-08T04:50:27Z-
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001;94:153-6.
2. Zhou XD, Tang ZY, Yang BH, Lin ZY, Ma ZC, Ye SL, Wu ZQ, Fan J, Qin LX, Zheng BH. Experience of 1000 patients who underwent hepatectomy for small hepatocellular carcinoma. Cancer 2001;91:1479-86.
3. Hoofnagle JH. Hepatocellular carcinoma: summary and recommendations. Gastroenterology 2004;127:S319-23.
4. Colombo M. Hepatocellular carcinoma. J Hepatol 1992;15:225-36.
5. Livraghi T, Giorgio A, Marin G, Salmi A, de Sio I, Bolondi L, Pompili M, Brunello F, Lazzaroni S, Torzilli G, et al. Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology 1995;197:101-8.
6. Pelletier G, Ducreux M, Gay F, Luboinski M, Hagege H, Dao T, Van Steenbergen W, Buffet C, Rougier P, Adler M, Pignon JP, Roche A. Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial. Groupe CHC. J Hepatol 1998;29:129-34.
7. Venook AP. Treatment of hepatocellular carcinoma: too many options? J Clin Oncol 1994;12:1323-34.
8. Farmer DG, Busuttil RW. The role of multimodal therapy in the treatment of hepatocellular carcinoma. Cancer 1994;73:2669-70.
9. Hertl M, Cosimi AB. Liver transplantation for malignancy. Oncologist 2005;10:269-81.
10. Hanahan D, Weinberg RA. Retrospective: Judah Folkman (1933-2008). Science 2008;319:1055.
11. Folkman J, D'Amore PA. Blood vessel formation: what is its molecular basis? Cell 1996;87:1153-5.
12. Olsson AK, Johansson I, Akerud H, Einarsson B, Christofferson R, Sasaki T, Timpl R, Claesson-Welsh L. The minimal active domain of endostatin is a heparin-binding motif that mediates inhibition of tumor vascularization. Cancer Res 2004;64:9012-7.
13. Jozkowicz A, Dulak J. Helper-dependent adenoviral vectors in experimental gene therapy. Acta Biochim Pol 2005;52:589-99.
14. Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, Que I, Lowik C, Timpl R, Olsen BR. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 1999;18:4414-23.
15. Mori K, Duh E, Gehlbach P, Ando A, Takahashi K, Pearlman J, Yang HS, Zack DJ, Ettyreddy D, Brough DE, Wei LL, Campochiaro PA. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 2001;188:253-63.
16. Hanai J, Dhanabal M, Karumanchi SA, Albanese C, Waterman M, Chan B, Ramchandran R, Pestell R, Sukhatme VP. Endostatin causes G1 arrest of endothelial cells through inhibition of cyclin D1. J Biol Chem 2002;277:16464-9.
17. Yano H, Hara A, Shinoda J, Takenaka K, Yoshimi N, Mori H, Sakai N. Immunohistochemical analysis of beta-catenin in N-ethyl-N-nitrosourea-induced rat gliomas: implications in regulation of angiogenesis. Neurol Res 2000;22:527-32.
18. Muller T, Choidas A, Reichmann E, Ullrich A. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem 1999;274:10173-83.
19. Dixelius J, Cross M, Matsumoto T, Sasaki T, Timpl R, Claesson-Welsh L. Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer Res 2002;62:1944-7.
20. Kisker O, Becker CM, Prox D, Fannon M, D'Amato R, Flynn E, Fogler WE, Sim BK, Allred EN, Pirie-Shepherd SR, Folkman J. Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 2001;61:7669-74.
21. Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999;59:3308-12.
22. Ding I, Sun JZ, Fenton B, Liu WM, Kimsely P, Okunieff P, Min W. Intratumoral administration of endostatin plasmid inhibits vascular growth and perfusion in MCa-4 murine mammary carcinomas. Cancer Res 2001;61:526-31.
23. Ostwald TJ, MacLennan DH. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 1974;249:974-9.
24. Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 1989;264:21522-8.
25. McCauliffe DP, Yang YS, Wilson J, Sontheimer RD, Capra JD. The 5'-flanking region of the human calreticulin gene shares homology with the human GRP78, GRP94, and protein disulfide isomerase promoters. J Biol Chem 1992;267:2557-62.
26. Rooke K, Briquet-Laugier V, Xia YR, Lusis AJ, Doolittle MH. Mapping of the gene for calreticulin (Calr) to mouse chromosome 8. Mamm Genome 1997;8:870-1.
27. Waser M, Mesaeli N, Spencer C, Michalak M. Regulation of calreticulin gene expression by calcium. J Cell Biol 1997;138:547-57.
28. Denning GM, Leidal KG, Holst VA, Iyer SS, Pearson DW, Clark JR, Nauseef WM, Clark RA. Calreticulin biosynthesis and processing in human myeloid cells: demonstration of signal peptide cleavage and N-glycosylation. Blood 1997;90:372-81.
29. Michalak M, Milner RE, Burns K, Opas M. Calreticulin. Biochem J 1992;285 ( Pt 3):681-92.
30. Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 1998;188:2349-56.
31. O'Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996;2:689-92.
32. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277-85.
33. Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J 1999;344 Pt 2:281-92.
34. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001;108:669-78.
35. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005;123:321-34.
36. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007;13:54-61.
37. Clarke C, Smyth MJ. Calreticulin exposure increases cancer immunogenicity. Nat Biotechnol 2007;25:192-3.
38. Chang CJ, Chen YH, Huang KW, Cheng HW, Chan SF, Tai KF, Hwang LH. Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology 2007;45:746-54.
39. Slansky JE, Rattis FM, Boyd LF, Fahmy T, Jaffee EM, Schneck JP, Margulies DH, Pardoll DM. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 2000;13:529-38.
40. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993;90:3539-43.
41. Boyer MW, Waller EK, Bray RA, Unangst T, Johnson TS, Phillips C, Jurickova I, Winton EF, Yeager AM. Cytokine upregulation of the antigen presenting function of acute myeloid leukemia cells. Leukemia 2000;14:412-8.
42. Jager E, Ringhoffer M, Dienes HP, Arand M, Karbach J, Jager D, Ilsemann C, Hagedorn M, Oesch F, Knuth A. Granulocyte-macrophage-colony-stimulating factor enhances immune responses to melanoma-associated peptides in vivo. Int J Cancer 1996;67:54-62.
43. Hsieh CL, Pang VF, Chen DS, Hwang LH. Regression of established mouse leukemia by GM-CSF-transduced tumor vaccine: implications for cytotoxic T lymphocyte responses and tumor burdens. Hum Gene Ther 1997;8:1843-54.
44. Wang J, Snider DP, Hewlett BR, Lukacs NW, Gauldie J, Liang H, Xing Z. Transgenic expression of granulocyte-macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung. Blood 2000;95:2337-45.
45. Brunda MJ. Interleukin-12. J Leukoc Biol 1994;55:280-8.
46. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ, Gately MK, Wolf SF, Schreiber RD, Storkus WJ, et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol 1994;153:1697-706.
47. Tsung K, Meko JB, Peplinski GR, Tsung YL, Norton JA. IL-12 induces T helper 1-directed antitumor response. J Immunol 1997;158:3359-65.
48. Cohen J. IL-12 deaths: explanation and a puzzle. Science 1995;270:908.
49. Chan SH, Kobayashi M, Santoli D, Perussia B, Trinchieri G. Mechanisms of IFN-gamma induction by natural killer cell stimulatory factor (NKSF/IL-12). Role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2. J Immunol 1992;148:92-8.
50. Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E, Malorni W, Nicaise P, Wolf SF, Belardelli F, Gessani S. IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages. J Immunol 1997;159:3490-7.
51. Ribatti D, Vacca A, Dammacco F. The role of the vascular phase in solid tumor growth: a historical review. Neoplasia 1999;1:293-302.
52. Milkiewicz M, Ispanovic E, Doyle JL, Haas TL. Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol 2006;38:333-57.
53. Li J, Tsai MD. Novel insights into the INK4-CDK4/6-Rb pathway: counter action of gankyrin against INK4 proteins regulates the CDK4-mediated phosphorylation of Rb. Biochemistry 2002;41:3977-83.
54. Li H, Fu X, Chen Y, Hong Y, Tan Y, Cao H, Wu M, Wang H. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology 2005;128:2029-41.
55. Fillat C, Carrio M, Cascante A, Sangro B. Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther 2003;3:13-26.
56. Kanai F, Shiratori Y, Yoshida Y, Wakimoto H, Hamada H, Kanegae Y, Saito I, Nakabayashi H, Tamaoki T, Tanaka T, Lan KH, Kato N, Shiina S, Omata M. Gene therapy for alpha-fetoprotein-producing human hepatoma cells by adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Hepatology 1996;23:1359-68.
57. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998;17:3351-62.
58. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997;3:639-45.
59. Habib NA, Sarraf CE, Mitry RR, Havlik R, Nicholls J, Kelly M, Vernon CC, Gueret-Wardle D, El-Masry R, Salama H, Ahmed R, Michail N, Edward E, Jensen SL. E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Hum Gene Ther 2001;12:219-26.
60. Lu QL, Liang HD, Partridge T, Blomley MJ. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 2003;10:396-405.
61. Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci U S A 1987;84:8463-7.
62. Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet 1999;353:1409.
63. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997;23:953-9.
64. Ng KY, Liu Y. Therapeutic ultrasound: its application in drug delivery. Med Res Rev 2002;22:204-23.
65. Ward M, Wu J, Chiu JF. Experimental study of the effects of Optison concentration on sonoporation in vitro. Ultrasound Med Biol 2000;26:1169-75.
66. Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 2003;14:591-7.
67. Sakakima Y, Hayashi S, Yagi Y, Hayakawa A, Tachibana K, Nakao A. Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther 2005;12:884-9.
68. Mukherjee D, Wong J, Griffin B, Ellis SG, Porter T, Sen S, Thomas JD. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol 2000;35:1678-86.
69. Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N, Aoki M, Ogihara T, Yasufumi K, Morishita R. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002;105:1233-9.
70. Bekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003;108:1022-6.
71. Koike H, Tomita N, Azuma H, Taniyama Y, Yamasaki K, Kunugiza Y, Tachibana K, Ogihara T, Morishita R. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med 2005;7:108-16.
72. Lu QL, Bou-Gharios G, Partridge TA. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 2003;10:131-42.
73. Huang KW, Huang YC, Tai KF, Chen BH, Lee PH, Hwang LH. Dual therapeutic effects of interferon-alpha gene therapy in a rat hepatocellular carcinoma model with liver cirrhosis. Mol Ther 2008;16:1681-7.
74. Isner JM. Myocardial gene therapy. Nature 2002;415:234-9.
75. Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Ther 2002;13:3-13.
76. Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999;286:2244-5.
77. Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci U S A 1999;96:4262-7.
78. Lucas ML, Heller L, Coppola D, Heller R. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther 2002;5:668-75.
79. Blomley M. Which US microbubble contrast agent is best for gene therapy? Radiology 2003;229:297-8.
80. Miller DL, Bao S, Gies RA, Thrall BD. Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound Med Biol 1999;25:1425-30.
81. Dijkmans PA, Juffermans LJ, Musters RJ, van Wamel A, ten Cate FJ, van Gilst W, Visser CA, de Jong N, Kamp O. Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr 2004;5:245-56.
82. Cosyns B, Weytjens C, Vanderhoogstrate M, Daniels C, Schoors D, Van Camp G. Tissue Doppler imaging does not show infraclinical alteration of myocardial function after contrast echocardiography. Eur J Echocardiogr 2005;6:238-42.
83. Johnson BF, Clay TM, Hobeika AC, Lyerly HK, Morse MA. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther 2007;7:449-60.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23263-
dc.description.abstract肝細胞癌是一個遍布於世界各地的疾病,特別在亞洲和非洲地區,肝癌更是好發的癌症之ㄧ;由於肝細胞癌常伴隨著血管異常增生,所以抗血管新生的策略被認為是一種很有潛力的治療方式。超音波目前則被認為是一個有效的工具,能夠將基因轉殖到特定的組織或腫瘤之中;超音波結合微泡(SonoVue®),可藉由產生空化效應使得細胞膜之通透性短暫的改變,而促進質體DNA進入到細胞內表現。本研究的第一個部分,我們探討三種不同的位置,如原位肝腫瘤、背部肝腫瘤以及肌肉部位,比較其超音波轉殖基因效率的差異。我們分別將Luciferase、IL-12、EGFP的質體DNA與SonoVue®混合後打入BALB/c小鼠的肝腫瘤或肌肉組織,再給予照射超音波;我們發現在肌肉部位相較於肝腫瘤部位,可產生較高的表現量。本研究的第二部份是嘗試利用超音波在肌肉轉殖基因的技術,去治療三種不同的肝腫瘤動物模式:分別是背部肝腫瘤模式、原位肝腫瘤模式以及原發性多位點肝腫瘤模式。我們各別轉殖兩種不同的抗血管新生基因,名為血管內膜阻生素(endostatin, ED)以及鈣網蛋白(calreticulin, CRT)。動物實驗的結果顯示,在分別經過四次的超音波基因治療後,對於上述三種不同的肝腫瘤動物模式都可以產生顯著的療效,並且有效地延長小鼠的存活時間。接著我們從免疫組織化學染色分析的結果觀察到,有較多的T細胞以及凋亡細胞出現在治療過的腫瘤中,此凋亡現象很有可能是由於腫瘤內的血管數目減少所造成。此外,我們結合了免疫療法與抗血管新生療法,先在肝腫瘤內打入攜帶GM-CSF和IL-12的重組腺病毒;而後再使用超音波結合微泡的技術轉殖ED或CRT。結果證明了不論是對於原位肝腫瘤或是原發性多位點肝腫瘤,結合治療都比單一種治療更能有效抑制腫瘤的生長。在治療組的腫瘤中我們也發現到,有明顯的T細胞浸潤以及更顯著減少的血管分佈。除此之外,在另外一個合併治療的實驗中,我們證實了結合化療藥物小紅莓(doxorubicin, Dox)與抗血管新生療法,可以比單一種療法發揮更顯著的療效。綜合以上結果,我們的研究首次證明了將ED或CRT的DNA與混合SonoVue®打入肌肉組織中,再以超音波照射該部位,可以有效地治療原位肝腫瘤,而這樣的策略或許將有潛力能夠應用於臨床治療。zh_TW
dc.description.abstractHepatocellular carcinoma (HCC) is one of the most common cancers in the world, particularly in Asia and Africa. Due to its highly neovascularization, anti-angiogenic approach could be a potential therapeutic strategy. Ultrasound (US) is an effective tool to locally deliver genes into target tumors or organs. US, in combination with microbubbles SonoVue®, can temporarily change the permeability of cell membranes by cavitation and thus enhances the delivery of plasmid DNA into cells. In the first part of this study, we compared the efficiency of US-mediated gene delivery at different sites, i.e., the orthotopic liver tumor, the subcutaneous tumor or the muscle. We injected luciferase, IL-12 or EGFP plasmid DNA mixed with SonoVue® into BALB/c mice either intramuscularly (IM) or intratumorally (IT), followed by exposure to US. We found that intramuscular injection provided better expression results than intratumoral injection. In the second part of this research, we assessed the therapeutic effects of US-mediated IM gene therapy on three previously established liver tumor models, namely subcutaneous tumor model, implanted liver tumor model and primary multifocal HCC model. We delivered the endostatin (ED) or the calreticulin (CRT) gene, both of which are anti-angiogenic factors through IM injection. The experimental results showed that four times of IM ultrasound treatment yielded significant therapeutic effects on these three liver tumor models and also prolonged the survival time in mice. Furthermore, immunohistochemical staining of the tumors revealed increased tumor-infiltrating T lymphocytes and apoptotic cells which were probably induced by the decreased neovascularization. We also combined immunotherapy with anti-angiogenic therapy, using recombinant adenoviruses carrying GM-CSF and IL-12 genes followed by ultrasound delivery of ED or CRT gene. The combined therapy showed much better therapeutic effects on both implanted and primary multifocal HCC models than either therapy alone. In this combined therapy, a very significant increase in tumor-infiltrating T cells and a further decrease in tumor vascularization were observed. In addition, combination of chemotherapy using doxorubicin with anti-angiogenic therapy also provided a better therapeutic effect than either therapy alone. Taken together, we have proved for the first time that co-injection of microbubbles and plasmid DNA intramuscularly followed by ultrasound exposure can effectively provide a cure for liver cancers, and this strategy may have therapeutic potential for the clinical treatment.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:50:27Z (GMT). No. of bitstreams: 1
ntu-98-R96445105-1.pdf: 7815008 bytes, checksum: 9256294e41b0343b9c5db3b526c0e075 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝…i
中文摘要…ii
英文摘要iv
目錄vi
圖表目錄vii
英文縮寫對照表ix
第一章、諸論1
1、肝細胞腫瘤1
2、針對腫瘤的基因治療2
3、超音波結合微泡在治療上的應用10
4、研究目標11
第二章、材料與方法…13
第三章、結果…26
第四章、討論…34
第五章、未來展望…40
第五章、參考文獻…42
第七章、圖表…49
第八章、附圖…72
圖表目錄
圖一、不同SonoVue®濃度對超音波轉殖基因效果之影響49
圖二、不同超音波照射時間(Exposure time)對轉殖基因效果之影響50
圖三、分析超音波轉殖IL-12基因後,血液中IL-12持續表現的時間51
圖四、經由超音波轉殖EGFP基因後,不同組織中EGFP的分布情形52
圖五、探討不同組織中血管的分佈情形53
圖六、定量不同組織中滯留的Luc DNA數量54
圖七、小鼠血清中肌肉損傷指標CPK 值的表現情形55
圖八、持續施打超音波轉殖ED 基因到肌肉中表現,小鼠血清中血管內膜阻生素的表現情形56
圖九、使用超音波轉殖抗血管新生基因到肌肉表現追蹤小鼠14 天大背部肝腫瘤之體積變化57
圖十、使用超音波轉殖抗血管新生基因到肌肉表現對於小鼠14 天大背部肝腫瘤之治療效果58
圖十一、用超音波轉殖抗血管新生基因到肌肉表現對於小鼠7 天大原位肝腫瘤之治療效果59
圖十二、利用非侵入式活體分子影像系統觀測用超音波轉殖抗血管新生基因到肌肉表現對原位肝腫瘤之治療效果60
圖十三、使用超音波轉殖抗血管新生基因到肌肉表現治療7 天大原位肝腫瘤小鼠所畫出的生存曲線圖61
圖十四、用超音波轉殖抗血管新生基因到肌肉表現對於原發性多位點肝腫瘤大鼠之治療效果62
圖十五、利用超音波轉殖抗血管新生基因到肌肉表現對Fischer 大鼠原位腦瘤的治療效果63
圖十六、合併免疫療法及超音波轉殖抗血管新生療法對於原位肝腫瘤小鼠模式之治療效果64
圖十七、合併免疫療法及超音波轉殖抗血管新生療法對於原發性多位點肝腫瘤大鼠之治療效果65
圖十八、合併化療及超音波轉殖抗血管新生療法對於原位肝腫瘤小鼠模式之治療效果66
圖十九、利用超音波轉殖抗血管新生之基因治療可使原位肝腫瘤中的血管數量67
圖二十、合併免疫療法及超音波轉殖抗血管新生療法可以使得原位肝腫瘤內的CD 4+ T cells 大量增加68
圖二十一、合併免疫療法及超音波轉殖抗血管新生療法可以使得原位肝腫瘤內的CD8+ T cells 明顯增加69
圖二十二、合併免疫療法及超音波轉殖抗血管新生療法可以促使更多的原位肝腫瘤進行細胞凋亡70
圖二十三、合併化療及超音波轉殖抗血管新生療法可以促使更多的原位肝腫瘤細胞進行凋亡71
附圖一、Anti-CD 31 staining (100X)72
附圖二、Anti-CD 4 staining (200X) 73
附圖三、Anti-CD 8 staining (200X) 74
附圖四、TUNEL staining (200X) 75
附圖五、TUNEL staining (200X) 76
dc.language.isozh-TW
dc.title應用超音波結合微泡進行原位肝腫瘤的抗血管新生基因治療zh_TW
dc.titleAnti-angiogenic Gene Therapy on Orthotopic Hepatocellular Carcinoma Using Ultrasound in Combination with Microbubblesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文翔,賈景山,林淑華
dc.subject.keyword抗血管新生基因,超音波,微泡,基因療法,zh_TW
dc.subject.keywordAnti-angiogenic gene,Ultrasound,Microbubbles,Gene therapy,en
dc.relation.page76
dc.rights.note未授權
dc.date.accepted2009-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
7.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved