請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23241完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林恭如(Gong-Ru Lin) | |
| dc.contributor.author | Wei-Lun Hsu | en |
| dc.contributor.author | 徐偉倫 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:49:19Z | - |
| dc.date.copyright | 2009-08-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | Chapter 1
[1.1] S. Jang, B. S. Kang, F. Ren, N. W. Emanetoglu, H. Shen, W. H. Chang, B. P. Gila, M. Hlad, and S. J. Peartonb, “Comparison of e-beam and sputter-deposited ITO films for 1.55 mu m metal-semiconductor-metal photodetector applications”, J. Electrochem. Soc., 154, H336-H339 (2007). [1.2] M. Buchanan, J. B. Webb, and D. F. Williams, “Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering”, Appl. Phys. Lett., 37, 213-215 (1980). [1.3] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, and J. C. Scott, “Polymeric anodes for improved polymer light-emitting diode performance”, Appl. Phys. Lett., 70, 2067-2069 (1997). [1.4] J. F. Wager, “Transparent Electronics”, Science, 300, 1245-1246 (2003). [1.5] C. R. Martin, “Nanomaterials-A membrane-based synthetic approach”, Science, 266, 1961-1966 (1994). Chapter 2 [2.1] S. Jang, B. S. Kang, F. Ren, N. W. Emanetoglu, H. Shen, W. H. Chang, B. P. Gila, M. Hlad, and S. J. Peartonb, “Comparison of e-beam and sputter-deposited ITO films for 1.55 mu m metal-semiconductor-metal photodetector applications”, J. Electrochem. Soc., 154, H336-H339 (2007). [2.2] M. Buchanan, J. B. Webb, and D. F. Williams, “Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering”, Appl. Phys. Lett., 37, 213-215 (1980). [2.3] S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, and J. C. Scott, “Polymeric anodes for improved polymer light-emitting diode performance”, Appl. Phys. Lett., 70, 2067-2069 (1997). [2.4] J. F. Wager, “Transparent Electronics”, Science, 300, 1245-1246 (2003). [2.5] H. Han, Y. Zoo, S. K. Bhagat, J. S. Lewis, T. L. Alford, “Influence of defects and processing parameters on the properties of indium tin oxide films on polyethylene napthalate substrate”, J. Appl. Phys, 102, 063710 (2007). [2.6] D. H. Kim, M. R. Park, G. H. Lee, “Preparation of high quality ITO films on a plastic substrate using RF magnetron sputtering”, Surf. Coat. Technol., 201, 927-931 (2006). [2.7] A. De, P.K. Biswas, J. Manara, “Study of annealing time on sol-gel indium tin oxide films on glass”, Mater. Charact., 58, 629-636 (2007). [2.8] Y. Yang, Q. L. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere and S. T. Ho, “High-performance organic light-emitting diodes using ITO anodes grown on plastic by room-temperature ion-assisted deposition”, Adv. Mater., 16, 321-324 (2004). [2.9] H. Izumi, F. O. Adurodija, T. Kaneyoshi, T. Ishihara, H. Yoshioka and M. Motoyama, “Electrical and structural properties of indium tin oxide films prepared by pulsed laser deposition”, J. Appl. Phys., 91, 1213-1218 (2002). [2.10] N. Taga, H. Odaka, Y. Shigesato, I. Yasui, M. Kamei and T. E. Haynes, “Electrical properties of heteroepitaxial grown tin-doped indium oxide films”, J. Appl. Phys., 80, 978-984 (1996). [2.11] V. S. Reddy, K. Das, A. Dhar and S. K. Ray, “The effect of substrate temperature on the properties of ITO thin films for OLED applications”, Semicond. Sci. Technol., 21, 1747-1752 (2006). [2.12] A.Pokaipisit, M. Horprathum, and P. Limsuwan, “Vacuum and air annealing effects on properties of indium tin oxide films prepared by ion-assisted electron beam evaporation”,Jap. J. Appl. Phys., 47, 4692-4695 (2008). [2.13] H. Tetsuka, T. Ebina, T. Tsunoda, H. Nanjo, F. Mizukami, “Fabrication and characterization of ITO thin films on heat-resistant transparent flexible clay films”, Surf. Coat. Technol., 202, 2955-2959 (2008). [2.14] K. Füchsel, U. Schulz, N. Kaiser, and A. Tünnermann, “Low temperature deposition of indium tin oxide films by plasma ion-assisted evaporation”, Appl. Opt., 47, C297-C302 (2008). [2.15] C. S. Hsi, B. Houng, B. Y. Hou, G. J. Chen, S. L. Fu, “Effect of Ru addition on the properties of Al-doped ZnO thin films prepared by radio frequency magnetron sputtering on polyethylene terephthalate substrate”, J. Alloys Compd., 464, 89-94 (2008). [2.16] E. Aperathitis, M. Bender, V. Cimalla, G. Ecke, and M. Modreanu, “Properties of rf-sputtered indium-tin-oxynitride thin films”, J. Appl. Phys., 94, 1258-1266 (2003). [2.17] S. H. Brewer and S. Franzen, “Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity”, J. Alloys Compd., 338, 73-79 (2002). [2.18] D. Amalric-Popescu and F. Bozon-Verduraz, “Infrared studies on SnO2 and Pd/SnO2”, Catal. Today 70, 139-154 (2001). [2.19] R. Rai, T.D. Senguttuvan, S.T. Lakshmikumar, “Study of the electronic and optical bonding properties of doped SnO2”, Comput. Mater. Sci., 37, 15-19 (2006). [2.20] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol., 20, S35-S44 (2005). [2.21] J. H. Park, J. H. Chae, D. Kim “Influence of nickel thickness on the properties of ITO/Ni/ITO thin films”, J. Alloys Compd., 478, 330-333 (2009). [2.22] J. Y. Lee, J. W. Yang, J. H. Chae, J. H. Park, J. I. Choi, H. J. Park, D. Kim, “Dependence of intermediated noble metals on the optical and electrical properties of ITO/metal/ITO multilayers”, Opt. Commun.., 282, 2362-2366 (2009). [2.23] M. K. Chong, K. Pita, S. T. H. Silalahi, “Correlation between diffraction patterns and surface morphology to the model of oxygen diffusion into ITO films”, Mater. Chem. Phys., 115, 154-157 (2009). [2.24] L. Hao, X. Diao, H. Xu, B. Gu, T. Wang “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates”, Appl. Surf. Sci., 254, 3504-3508 (2008). [2.25] J. H. Kim, B. D. Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, and S. Y. Lee “Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature”, J. Appl. Phys., 100, 113515 (2006). [2.26] T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto, T. Yamamoto, “Effects of substrate temperature on crystallinity and electrical properties of Ga-doped ZnO films prepared on glass substrate by ion-plating method using DC arc discharge”, Surf. Coat. Technol., 202, 973-976 (2007). [2.27] H. K. Park, J. A. Jeong, Y. S. Park, S. I. Na, D. Y. Kim, and H. Kim, “Room-Temperature Indium-Free Ga:ZnO/Ag/Ga:ZnO ultilayer Electrode for Organic Solar Cell Applications”, Electrochem. Solid-State Lett., 12, H309-H311 (2009). [2.28] J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chi, “Effect of Thermal Annealing on Ga-Doped ZnO Films Prepared by Magnetron Sputtering”, J. Electrochem. Soc., 154, H521-H524 (2007). [2.29] E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev., 93, 632-633 (1954). [2.30] E. Fortunato, L. Raniero, L. Silva, A. Gonc-alves, A. Pimentel, P. Barquinha, H. A´guas, L. Pereira, G. Gonc-alves, I. Ferreira, E. Elangovan, R. Martins, “Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications”, Sol. Energy Mater. Sol. Cells, 92, 1605-1610 (2008). [2.31] B. T. Lee, T. H. Kim, and S. H. Jeong, “Growth and characterization of single crystalline Ga-doped ZnO films using rf magnetron sputtering”, J. Phys. D: Appl. Phys., 39, 957-961 (2006). [2.32] H. Kostlin, R. Jost, and W. Lems, “Optical and Electrical Properties of Doped In2O3 Films”, Phys. Status Solidi A, 29, 87-93 (1975). [2.33] Z. Huang, C. Chai, X. Tan, J. Wu, A. Yuan, Z. Zhou, “Photoluminescence properties of the In2O3 octahedrons synthesized by carbothermal reduction method”, Mater Lett., 61, 5134-5140 (2007). [2.34] W. Chen , D. Ghosh, S. Chen, “Large-scale electrochemical synthesis of SnO2 nanoparticles”, J Mater Sci, 43, 5291-5299 (2008). [2.35] M. R. Mohammadi, M. Ghorbani, M. C. Cordero-Cabrera, D. J. Fray, “Preparation and characterisation of nanostructural TiO2–Ga2O3 binary oxides with high surface area derived form particulate sol–gel route”, J Mater Sci, 42, 4976-4986 (2007). [2.36] U. Rambabu, N. R. Munirathnam, T. L. Prakash, B. Vengalrao, S. Buddhudu, “Synthesis and characterization of morphologically different high purity gallium oxide nanopowders”, J Mater Sci, 42, 9262-9266 (2007). [2.37] A. K. Abduev, A. K. Akhmedov, A. S. Asvarov, “The structural and electrical properties of Ga-doped ZnO and Ga, B-codoped ZnO thin films: The effects of additional boron impurity”, Sol. Energy Mater. Sol. Cells., 91, 258-260 (2007). [2.38] J. K. Sheu, M. L. Lee, Y. S. Lu, and K. W. Shu “Ga-Doped ZnO Transparent Conductive Oxide FilmsApplied to GaN-Based Light-Emitting Diodes for Improving Light Extraction Efficiency”, IEEE J. Quantum Electron., 40, 1211-1218 (2008). [2.39] B. D. Ahn, S. H. Oh, H. J. Kim, M. H. Jung, and Y. G. Ko, “Low temperature conduction and scattering behavior of Ga-doped ZnO”, Appl. Phys. Lett., 91, 252109 (2007). [2.40] T. Yamada, K. Ikeda, S. Kishimoto, H. Makino, T. Yamamoto, “Effects of oxygen partial pressure on doping properties of Ga-doped ZnO films prepared by ion-plating with traveling substrate”, Surf. Coat. Technol., 201, 4004-4007 (2006). [2.41] S. Kim A, W. I. Lee, E. H. Lee, S. K. Hwang C. Lee, “Dependence of the resistivity and the transmittance of sputterdeposited Ga-doped ZnO films on oxygen partial pressure and sputtering temperature”, J Mater Sci, 42, 4845–4849 (2007). Chapter 3 [3.1] C. R. Martin, “Nanomaterials-A membrane-based synthetic approach”, Science, 266, 1961-1966 (1994). [3.2] M. M. Lohrengel, “Thin anodic oxide layers on aluminium and other valve metals: high field regime”, Mater. Sci. Eng., R., 11, 243-294 (1993). [3.3] F. Keller, M. S. Hunter, D. L. Robinson, “Structural features of oxide coatings on aluminum”, J. Electrochem. Soc., 100, 411-419 (1953). [3.4] D. AIMawlawi, N. Coombs, and M. Moskovits, “Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size”, J. Appl. Phys., 70, 4421-4425 (1991). [3.5] S. Phok, S. Rajaputra and V. P. Singh, “Copper indium diselenide nanowire arrays by electrodeposition in porous alumina templates”, Nanotechnology, 18, 475601, (2007). [3.6] G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production”, Nature, 393, 346-349 (1998). [3.7] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, “Highly ordered monocrystalline silver nanowire arrays”, J. Appl. Phys., 91, 3243-3247 (2002). [3.8] N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays”, Appl. Phys. Lett., 82, 1281-1283 (2003). [3.9] G. E. Thompson, R. C. Furneaux, G. C. Wood, “Nucleation and growth of porous anodic films on aluminum”, Nature, 272, 433-435 (1978). [3.10] J. W. Diggle, T. C. Downie and C. W. Goulding, “Anodic oxide films on aluminum”, Chem. Rev., 69, 365-405 (1969). [3.11] S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, T. Hashimoto, and H. Habazaki, “Compositional Evidence for Flow in Anodic Films on Aluminum under High Electric Fields”, J. Electrochem. Soc., 159, C540-C545 (2007). [3.12] Y. Li, G. H. Li, G. W. Meng, L. D. Zhang and F. Phillipp, “Photoluminescence and optical absorption caused by the F+ centres in anodic alumina membranes”, J. Phys.: Condens. Matter., 13, 2691-2699 (2001). [3.13] T. Gao, G. Meng and L. Zhang “Blue luminescence in porous anodic alumina films: the role of the oxalic impurities”, J. Phys.: Condens. Matter., 15, 2071-2079 (2003). [3.14] S. J. Park, H. S. Lee, J. H. Cho, and K. W. Lee “Nanoporous Anodic Alumina Film on Glass: Improving Transparency by an Ion-Drift Process”, Electrochem. Solid-State Lett., 8, D5-D7 (2005) [3.15] G. Y. Ha, T. Y. Park, J. Y. Kim, D. J. Kim, K. I. Min, and S. J. Park, “Improvement of Reliability of GaN-Based Light-Emitting Diodes by Selective Wet Etching With p-GaN”, IEEE Photonics Technol. Lett., 19, 813-815 (2007). [3.16] C. C. Kao, H. C. Kuo, K. F. Yeh, J. T. Chu, W. L. Peng, H.W. Huang, T. C. Lu, and S. C. Wang, “Light–Output Enhancement of Nano-Roughened GaN Laser Lift-Off Light-Emitting Diodes Formed by ICP Dry Etching”, IEEE Photonics Technol. Lett., 19, 849-851 (2007). [3.17] B. Delley, E. F. Steigmeier, “Quantum Confinement in Si Nanocrystals”, Phys. Rev. B., 47, 1397-1400 (1993). [3.18] F. Iacona, G. Franzo`, and C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals”, J. Appl. Phys., 87, 1295-1303 (2000). [3.19] S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing”, Appl. Phys. Lett., 70, 1207-1209 (1997). [3.20] K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan, and L. E. Brus, “A Luminescent Silicon Nanocrystal Colloid via a High-Temperature Aerosol Reaction”, J. Phys. Chem., 97, 1224-1230 (1993). [3.21] P. M. Fauchet “Progress Toward Nanoscale Silicon Light Emitters”, IEEE J. Sel. Top. Quantum Electron., 4, 1020-1028 (1998). [3.22] G. -R. Lin, C. J. Lin, Chi-Kuan Lin, L. J. Chou and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2”, J. Appl. Phys., 97, 094306, (2005). [3.23] F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzo` , and F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 mm in Er-doped Si nanocluster-based devices”, Appl. Phys. Lett., 81,3242-3244, (2002). [3.24] L. Rebohle, J. von Borany, R. A. Yankov, and W. Skorupa, I. E. Tyschenko, H. Fro¨b and K. Leo, “Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers”, Appl. Phys. Lett., 71,2809-2811 (1997). [3.25] S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, “Evaluation of Q d for Electrons Tunneling from the Si/Si02 Interface Compared to Electron Tunneling from the Poly-Si/Si02 Interface”, IEEE Trans. Electron Devices, 40, 1251-1257 (1993). [3.26] Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, I. N. Lin “Characteristics of ultra-nano-crystalline diamond films grown on the porous anodic alumina template”, Diamond Relat. Mater., 15, 324-328 (2006). [3.27] T. T. Chen, Y. P. Hsieh, C. M. Wei, Y. F. Chen, L. C. Chen, K. H. Chen, Y. H. Peng, and C H Kuan, “Electroluminescence enhancement of SiGe/Si multiple quantum wells through nanowall structures”, Nanotechnology, 19, 365705, (2008). [3.28] H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal”, Appl. Phys. Lett., 84,457-45 T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., 84, 855-4857, (2004).9 (2004). [3.29] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., 84, 855-4857 (2004). [3.30] R. H. Horng, S. H. Huang, C. C. Yang, and D. S. Wuu, “Efficiency Improvement of GaN-Based LEDs with ITO Texturing Window Layers Using Natural Lithography” [3.31] G. -R. Lin, Y. H. Pai, and C. T. Lin “Microwatt MOSLED Using SiOx With Buried Si Nanocrystals on Si Nano-Pillar Array”, J. Lightwave Technol., 26, 1486-1491, (2008). [3.32] R. Tohmon, Y. Shimogaichi, H. Mizuno, Y. Ohki, K. Nagasawa, and Y. Hama, “2.7-eV luminescence in as-manufactured high-purity silica glass”, Phys. Rev. Lett., 62, 1388-1391 (2009). [3.33] P. Mutti, and G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli and M. Guzzi, “Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers”, Appl. Phys. Lett., 66, 851-853 (1995). [3.34] H. Nishikawa, R. E. Stahlbush, and J. H. Stathis, “Oxygen-deficient centers and excess Si in buried oxide using photoluminescence spectroscopy”, Phys. Rev. B, 60, 15910 (1999). [3.35] C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon”, Phys. Rev. B, 48, 11024 (1999). [3.36] C. J. Lin, C. K. Lee, E. W. G. Diau, and G. R. Lin, “Time-Resolved Photoluminescence Analysis of Multidose Si-Ion-Implanted SiO¬2”, J. Electrochem. Soc., 153, E25 (2006). [3.37] G. Chakraborty, S. Chattopadhyay, and C. K. Sarkar, “Tunneling current at the interface of silicon and silicon dioxide partly embedded with silicon nanocrystals in metal oxide semiconductor structures”, J. Appl. Phys., 101, 024315 (2007). [3.38] E. Kameda, T. Matsuda, Y. Emura, and T. Ohzone, “Fowler-Nordheim tunneling in MOS capacitors with Si-implanted SiO2”, Solid-State Electron., 42, 2105-2111 (1998). [3.39] J. Chen, T. Lee, J. Su, W. Wang, and M. A. Reed, Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, Valencia, California, 2004), 5, 633 (2004). [3.40] S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films”, Appl. Phys. Lett., 71, 698-670 (1997). [3.41] L. A. Nesbit, “Annealing characteristics of Si-rich SiO¬2 film”, Appl. Phys. Lett., 46, 38-40 (1985). [3.42] S. G. Yang, T. Li, L. S. Huang, T. Tang, J. R. Zhang, B. X. Gu, Y. W. Du, S. Z. Shi, and Y. N. Lu, “Stability of anodic aluminum oxide membranes with nanopores”, Phys. Lett. A, 318, 440-444 (2003). [3.43] . A. Moreno, B. Garrido, P. Pellegrino, C. Garcia, J. Arbiol, and J. R. Morante, P. Marie, F. Gourbilleau, and R. Rizk, “Size dependence of refractive index of Si nanoclusters embedded in SiO2”, J. Appl. Phys., 98, 013523 (2005). [3.44] H. Kim, C. M. Gilmore, A. Pique´ , J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “”, J. Appl. Phys., 86, 6451-6461 (1999). [3.45] R. L. Chiu, and P. H. Chang, “Thickness dependence of refractive index for anodic aluminium oxide films”, J. Mater. Sci. Lett., 16, 174–178, (1997). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23241 | - |
| dc.description.abstract | 在本論文中討論了退火造成氧化銦錫和鎵參雜的氧化鋅薄膜的優化。氧化銦錫在退火後,其晶相轉為柱狀晶且同時提升錫氧鍵吸收,大大降低其電阻率至1.2x10-4 歐姆-公分。45奈米的鎵參雜氧化鋅的電阻率降低至1.8x10-2 歐姆-公分並在紫外光至可見光區域保有超過95%的穿透率,鎵參雜氧化鋅在可見光區擁有較佳的穿透率 (大於80%),但是反觀電阻率,由於過多游離鎵雜質造成嚴重的散射,就算結構晶相提升也無法補償此劣化,因此鎵參雜的氧化鋅卻比氧化銦錫高了兩個數量級。將兩薄膜的電性跟光性做比較,氧化銦錫薄膜擁有較低的電阻率以及保有還不錯的穿透率,仍是較佳的選擇。此外,多孔性陽極氧化鋁可以以草酸為電解液用兩次陽極氧化法得到,擴孔步驟是為了去除底部的阻隔層,在500度退火後可將缺陷去除,再將此應用到矽基金氧半發光二極體作為表面粗糙層,可得到擁有氧化銦錫及多孔隙陽極氧化鋁覆蓋的矽基金氧半發光二極體,比較此兩者的效率,擁有孔隙氧化鋁的元件在1100度退火後有較低的起始電壓為130伏特,以及較低的1.25電子伏特等效能障,其最大發光功率為544奈瓦並有著較大的功率-電流斜率和內部量子效率分別為0.598毫瓦每安培和0.059%, 其最佳電光轉換效率和外部量子效率分別為1.78x10-4 %及0.027%,其效率比傳統結構還要高。 | zh_TW |
| dc.description.abstract | In this thesis, the annealing induced optimization on transmittance and resistivity of the sputtered ITO and GZO films are compared. After annealing, the ITO transforms its crystallinity from amorphous to columnar nano-grains and enriches the Sn-O bonds absorption to greatly reduce its resistivity to 1.2x10-4 Ohm-cm. The resistivity of 45-nm GZO film reduces to 1.8x10-2 Ohm-cm, while the UV-VIS transmittance remains at > 95%. The GZO film exhibits a higher optical transmittance than ITO film in visible light region (> 80%). However, its electrical resistivity is two orders of magnitude higher than that of ITO film. The higher resistivity is mainly attributed to the serious carrier scattering by ionized impurity of the redundant Ga, and even annealing induced crystallinity is unable to compensate the deterioration. In view of the optical and electrical performance of both GZO and ITO film, the compromised optical and electrical property of ITO film is preferable with relatively low resistivity and quite good UV-visible transmittance. Moreover, the formation of porous AAO on p-Si substrate is demonstrated with two-step anodization in oxalic solution. Pore-widening process is required to remove the barrier oxide layer. Defects are suppressed after post annealing of 500oC. After applying the porous AAO to the conventional Si-based MOSLD as a surface roughness layer, the ITO/AAO covered MOSLED is fabricated. In comparison with the conventional and the ITO/AAO covered MOSLED, the latter demonstrates a lower turn-on voltage of 130V, and lower effective barrier height of 1.25 eV after 1100oC annealing. Hence, the maximal output power of ITO/AAO covered sample is 544 nW with corresponding P-I slope and internal quantum efficiency of 0.598 mW/A and 0.059% while the conventional one is a little lower. The power conversion ratio of 1.78x10-4% and external quantum efficiency of 0.027% are also higher at the ITO/AAO covered MOSLED. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:49:19Z (GMT). No. of bitstreams: 1 ntu-98-R96941007-1.pdf: 1628717 bytes, checksum: 3093ae399488bb3ca2a395ee9381b473 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Issue of the refinement on Transparent Conducting Oxide and the efficiency improvement of MOSLED 1 1.2 Motivation 2 1.3 Organization of the Thesis 2 Chapter 2 Annealing Induced Refinement of Indium Tin Oxide and Gallium doped Zinc Oxide….. 3 2.1 Nano-Grain Crystalline Transformation Enhanced UV Transparency of Annealing Refined Indium Tin Oxide Film 3 2.1.1 Introduction 3 2.1.2 Sample preparation and experimental setup 4 2.1.3 Results and Discussion 4 2.1.3.1 Optical Property 4 2.1.3.2 Electrical Property 5 2.1.3.3 Crystallinity Transformation 6 2.1.3.4 FTIR Analysis 7 2.1.4 Summary 8 2.2 Comparison on the transmittance and conductivity of Indium Tin Oxide and Gallium Doped Zinc Oxide Films after Annealing 10 2.2.1 Introduction 10 2.2.2 Sample preparation and experimental setup 11 2.2.3 Results and Discussion 12 2.2.3.1 Optical and electrical properties of 45-nm thick GZO film 12 2.2.3.2 Optical and electrical properties of 100-nm thickness GZO film 14 2.2.3.3 Comparison of optical and electrical properties between ITO and GZO film 16 2.2.3.4 Annealing Induced Structural Variation of ITO Thin Films 17 2.2.3.5 Annealing Induced Structural Variation of GZO Thin Films 21 2.2.4 Summary 24 Chapter 3 ITO and Nano-porous Anodic Aluminum Oxide covered MOSLED 36 3.1 The formation and characterization of nano-porous AAO on p-Si wafer 36 3.1.1 Introduction 36 3.1.2 Sample preparation and experimental setup 37 3.1.3 Results and Discussion 38 3.1.3.1 The chemical reaction of transferring Al plate into nano-porous AAO membrane 38 3.1.3.2 The structural aspect of nano-porous AAO on p-Si substrate 39 3.1.3.3 The optical property of nano-porous AAO 41 3.1.3.4 The electrical property of nano-porous AAO on p-Si substrate 43 3.1.4 Summary 43 3.2 The light emission of Si nanocrystal based MOSLEDs made on SiOx deposited on or covered by AAO membrane 45 3.2.1 Introduction 45 3.2.2 Sample preparation and experimental setup 46 3.2.3 Results and Discussion 47 3.2.3.1 The conventional MOSLED made on p-Si substrate 48 3.2.3.2 The MOSLED made on Si-nc:SiOx deposited upon nano-porous AAO coated p-Si substrate 53 3.2.3.3 The ITO and nano-porous AAO covered MOSLED made on Si-nc:SiOx /p-Si substrate 57 3.2.3.4 Comparison on the performances of ITO/AAO/SiOx/Si/Al, ITO/SiOx/AAO/Si/Al, and ITO/SiOx/Si/Al MOSLEDs 60 3.2.4 Summary 63 Chapter 4 Conclusions 79 REFERENCE 82 作者簡介 94 Publication List 95 | |
| dc.language.iso | en | |
| dc.subject | 光萃取效率 | zh_TW |
| dc.subject | 氧化銦錫 | zh_TW |
| dc.subject | 鎵參雜氧化鋅 | zh_TW |
| dc.subject | 穿透率 | zh_TW |
| dc.subject | 電阻率 | zh_TW |
| dc.subject | 結晶性 | zh_TW |
| dc.subject | 多孔性陽極氧化鋁 | zh_TW |
| dc.subject | 陽極氧化鋁 | zh_TW |
| dc.subject | 表面糙化 | zh_TW |
| dc.subject | ITO | en |
| dc.subject | GZO | en |
| dc.subject | light extraction | en |
| dc.subject | surface roughness | en |
| dc.subject | AAO | en |
| dc.subject | porous anodic aluminum oxide | en |
| dc.subject | crystallinity | en |
| dc.subject | resistivity | en |
| dc.subject | transmittance | en |
| dc.title | 以奈米孔隙透明導電膜優化奈米矽金氧半發光二極體之研究 | zh_TW |
| dc.title | Optimization of Nanoporous Transparent Conducting Oxide covered Si Nanocrystal MOS Light Emitting Diodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃建璋(Jian-Jang Huang),陳啟昌(Chii-Chang Chen),李明昌(Ming-Chang Lee) | |
| dc.subject.keyword | 氧化銦錫,鎵參雜氧化鋅,穿透率,電阻率,結晶性,多孔性陽極氧化鋁,陽極氧化鋁,表面糙化,光萃取效率, | zh_TW |
| dc.subject.keyword | ITO,GZO,transmittance,resistivity,crystallinity,porous anodic aluminum oxide,AAO,surface roughness,light extraction, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
