Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23236
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏慧(Min-Huey Chen)
dc.contributor.authorYi-Wen Hanen
dc.contributor.author韓依彣zh_TW
dc.date.accessioned2021-06-08T04:49:03Z-
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation1. About I, Bottero MJ, Denato P de, Camps J, Franquin JC, Mitsiadis TA (2000). Human dentin production in vitro. Exp Cell Res 258:33–41
2. Ahdjoudj S, Lasmoles F, Oyajobi BO, Lomri A, Delannoy P, Marie PJ (2001). Reciprocal control of osteoblast/chondroblast and osteoblast/adipocyte differentiation of multipotential clonal human marrow stromal F/STRO-1(+) cells. Cell Biochem. 81(1):23-38.
3. Arana-Chavez VE, Massa LF (2004). Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol 36: 1367–1373.
4. Backer O (1966). Posteruptive changes in dental enamel. J. Dent. Res. 45, 503-511.
5. Buchaille R, Couble ML, Magloire H, Bleicher F (2000). A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells. Matrix Biol 19: 421–430.
6. Butler WT (1995). Dentin matrix proteins and dentinogenesis. Connect. Tissue Res. 33(1-3):59-65. Review.
7. Butler WT, Brunn JC, Qin C (2003). Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res. 44 Suppl 1:171-8.
8. Butler WT, Ritchie H (1995). The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol. 39(1):169-79.
9. Chai Y, Jiang X, Ito Y, Bringas P, Jr, Han J, Rowitch D H, Soriano P, McMahon A P, Sucov H M (2000). Development (Cambridge, UK) 127:1671–1679,
10. Chnag TC, Wang JK, Hung MW, Chiao CH, Tsai LC and Chang GG (1994). Regulation or expression of alkaline phosphatase in a human breast cancer cell line. Biochem. J. 303:199-205
11. Cohen S and Hargreaves KM. Pathway of the pulp. 9th edition, 2006
12. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nor JE. (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth.
13. Cutress TW. (1972). The inorganic composition and solubilityof dental enamel from several specialized population groups. Arch. Oral Biol. 17, 93-109.
14. de Bernard B (1982). Glycoproteins in the local mechanism of calcification. Clin Orthop Relat Res. Jan-Feb;(162):233-44.
15. de Oliveira PT, Zalzal SF, Beloti MM, Rosa AL, Nanci A (2007). Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. J Biomed Mater Res A. Mar 1;80(3):554-64.
16. Doyon GE, Dumsha T and von Fraunhofer JA (2005). Fracture resistance of human root dentin exposed to intracanal calcium hydroxide. J Endod 31, 895–897.
17. Ducy P, Desbois C, Boycem B, et al. (1996). Increased bone formationnin osteocalcin-deficient mice. Nature 382:448-52.
18. Encina NR, Billotte WG, Hofmann MC (1999). Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma. Lab Invest. Apr;79(4):449-57.
19. Feng JQ, Ye L, Chen D, Huang H, Zhang J, Lu Y, et al. (2002). Dmp1 deficient mice develop dwarfism, chondrodysplasia, and exhibit disorganized bone mineralization during post-natal development . J Bone Miner Res 17(Suppl 1):S127.
20. Fitzgerald M, Chiego DJ Jr, Heys DR (1990). Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol 35:707–715
21. Gabuda SP, Gaidash AA, Kozlova SG, Allan NL (2006). Structural forms of fl uorides in bone tissue of animals under chronic fluoridemintoxication. J Struct Chem (Engl Transl) 47:258–266
22. Gallop PM, Lian JB, Hauschka PV (1980). Carboxylated calcium-binding proteins and vitamin K. N Engl J Med 302:1460-6.
23. Goseki-sone M, Yamanda A, Hamatano R, Mizoi L, Iimura T, and Ezawa I (2002). Phosphate depletion enhances bone morphogenetic protein-4 gene expression on a cultured mouse marrow stormal cell line ST2. Biochemical and Biophysical Research Communications 2002;299:395-399.
24. Griffiths GS, Moulson AM, Petrie A, James IT (1998). Evaluation of osteocalcin and pyridinium crosslinks of bone collagen as markers of bone turnover in gingival crevicular fluid during different stages of orthodontic treatment. J Clin Periodontol. 25(6):492-8.
25. Gronthos S, Brahim J, Li W et al. (2002). Stem cell properties of human dental pulp stem cells. J Dent Res 81: 531–535.
26. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97: 13625–13630.
27. Gronthos S, Zannettino AC, Graves SE, Ohta S, Hay SJ, Simmons PJ (1999). Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J Bone Miner Res. Jan;14(1):47-56.
28. Gundberg CM, NishimotoSK. Vitamin K dependent proteins of bone and cartilage. In:Seibel MJ, Robins SO, Bilezilian JP, editors. Dynamics of bone and cartilage metabolism. San Diego:Academic Press, 1999:43-58
29. Hauschka PV, Lian JB, Cole DE, Gundberg C (1989). Osteocalcin and matrix Gla protein:vitamin K-dependent proteins in bone. Physiol Rev 69:990-1047
30. He LF and Chen JG (2006). DNA damage, apoptosis and cell cycle changes induced by fluoride in rat oral mucosal cells and hepatocytes. World J Gastroenterol 21 : 1144-1148.
31. Healey WB, Ludwig TG (1966). Enamel solubility studies on New Zealand teeth. N.Z. Dent. J. 62, 276-278.
32. Henthorn PS, Raducha M, Edwardso YH, Weiss MJ, Slaughters C, Lafferty MA, and Harris H (1987). Nucleotide and amino acid sequences of human intestinal alkaline phospatase: Close homologh to placental alkaline phospatase. Proc. Nati. Acad. Sci. USA 82:1234-1238.
33. Hopyan S, GokgozN, Bell RS, Andrulis IL, Alman BA, WUnder JS (1999). Expression of osteocalcin and its transcriptional regulators core-binding factor alpha 1 and MSX2 in osteoid-forming tumors:J Orthop Res 17:633-8
34. Isaac S, Brudevold F, Smith FA, Gardner DW (1958). Solubility rate and natural fluoride content of surface and subsurface enamel. J. Dent. Res. 37, 254-263.
35. Jeng JH, Hsieh CC, Lan WH, Chang MC, Lin SK, Hahn LJ, Kuo MY(1998). Cytotoxicity of sodium fluoride on human oral mucosal fibroblasts and its mechanisms.Cell Biol Toxicol. Dec;14(6):383-9.
36. Jenkins GN. (1963). Theories on the mode of action of fluoride in reducing dental decay. J. Dent. Res. 42, 444-454.
37. Kam W, Clauser E, Kim YS, Kanf YW, and Rutter WJ (1985). Cloning, sequencing, and chromosomal localization of human tern placental alkaline phospatase cDNA. Proc. Natl. Acad. Sci. USA 82:8715-8719
38. Kasugai S, Adachi M, and Ogura H (1988). Establishment and characterization of a clonal cell line(RPC-2A)from dental pulp of the rat incisor. Arch Oral Biol 33 (12) :887-891
39. Kern S, Eichler H, Stoeve J, H. Kluter and K. Bieback (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue, Stem Cells 24:1294–1301.
40. Kettunen P, Karavanova I, Thesleff I (1998). Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9. Dev Genet 22: 374–385.
41. Kopp JB, Robey PG (1990). Sodium fluoride dose not increase human bone cell proliferation or protein synthesis in vitro. Calcified Tissue Int 47:221–229Qu WJ, Zhong DB, Wu PF, Wang JF, Han B (2008). Sodium fluoride modulates caprine osteoblast proliferation and differentiation. J Bone Miner Metab. 26(4):328-34.
42. Laino G, Carinci F and Graziano A et al.(2006). In vitro bone production using stem cells derived from human dental pulp. J Craniofac Surg 17 : 511–515.
43. Mackie EJ (2003). Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 35:1301–1305
44. Margolis HC, Moreno EC (1990). Physicochemical perspectives on the cariostatic mechanisms of systemic andtopical fluorides. J. Dent. Res. 69, 606-613.
45. Millan JL, Manes T (1988). Seminoma-derived Nagao isozyme is encoded by germ-cell alkaline phospatase gene. Proc. Natl. Acad. Sci. USA 85:3024-8
46. Miura M, Gronthos S and Zhao M et al (2003) SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100 . 5807–5812.
47. Moreno EC, Margolis HC (1988). Composition of humanplaque. J. Dent. Res. 67, 1181-1189.
48. Munksgarard EC, Rhodes M, Mayne K, and Butler WT (1978). Collagen synthesis and secretion by rat inCisor odontoblasts in culture. Eur. J. Biochem. 82: 609.617.
49. Myers HM, Hamilton JG, Becks H (1952). A tracer studyof the transfer of F18 to teeth by topical application. J. Dent. Res. 31, 743-750.
50. Nagatomo K, Komaki M and Sekiya I et al. (2006). Stem cell properties of human periodontal ligament cells. J Periodont Res 41: 303–310.
51. Nakashima M (1991). Establishment of primary cultures of pulp cells from bovine permanent incisors. Arch Oral Biol 36: 655–663.
52. Nakashima M, Nagasawa H, Yamada Y, Reddi AH (1994). Regulatory role of Transforming Growth Factor-beta, bone morphogenetic protein-2 and protein-4 on gene expression of extracellular matrix proteins and differentiation of pulp cells. Dev. Biol 162: 18–28.
53. Nor JE (2006). Tooth regeneration in operative dentistry, Oper Dent 31 633–642.
54. Oguro A, Koizumi N, Horii K (1982). Effect of fluoride ion on proliferation of Vero cell line cells: growth acceleration by sodium fluoride. Koku Eisei Gakkai Zasshi. Jan;31(5):55-62.
55. Oguro A, Koizumi N, Horii KI (1982). Effect of fluoride ion on proliferation of Vero cell line cells: growth acceleration by sodium fluoride. J Dent Hearlth 31:55-460
56. Raymond MH, Shutte BC, TornerJC, Burns TL, Willing MC (1999). Osteocalcin:genetic and physical mapping of the human gene BGLAP and its potential role in postmenopausal osteoporosis. Genomics 60:210-216
57. Seibel MJ (2000). Molecular markers of bone turnover: biochemical, technical and analytical aspects. Osteoporos Int. 11 Suppl 6:S18-29.
58. Shi S, Bartold PM, Miura M, Seo BM, Robey PG and Gronthos S (2005). The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 8(3):191-9. Review.
59. Sirk DE, Fitch JM, Sarbiaz JP, Doane KJ and Linsenmayer TF (1990). Collagen fibrogenesis in Vitro: interaction of types I and V collagen regulates fibril diameter. J. Cell Sci. 95: 649-657.
60. Sloan AJ, Waddington RJ (2009). Dental pulp stem cells: what, where, how? Int J Paediatr Dent. Jan; 19 (1) : 61-70
61. Smith AJ, Cassidy N, Perry H, Begue-Kirn C, Ruch J-V, Lesot H (1995). Reactionary dentinogenesis. Int J Dev Biol 39: 273–280.
62. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D’Souza R, Hong S, et al. (2003). Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta-III. J Biol Chem 278:24874–2488
63. Stewart K, Monk P, Walsh S, Jefferiss CM, Letchford J and Beresford JN (2003). Stro-1, Hop-26 (CD 63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro, Cell Tissue Res 313: 281–290.
64. Tecles O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J, About I (2005). Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 50:103–108.
65. Tokunaga T, Morshed SRM, Ostuki S, Takayama F, Hashimoto K, Kashimata M, Nakamura Y, Nishikawa H, Yasui T, Yokote Y, Akahane K and Sakagami H (2003). Effect of endodontic agents on cytotoxicity induction by sodium fluoride. In Vivo 17: 583-592.
66. Transcript profiling of periodontal fibroblasts and osteoblasts. Lallier TE, Spencer A, Fowler MM (2005). J Periodontol. 76(7):1044-55.
67. TsukamotoY, Fukutani S, Shin-Ike T, Kubota T, Sato S, Suzuki Y, Mori M (1992). Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Arch Oral Biol. Dec;37(12) : 1045-55.
68. Tziafas D (1995). Basic mechanisms of cytodifferentiation and dentinogenesis during dental pulp repair. Int J Dev Biol 39:281–290
69. van der Burgt TP and Plasschaert AJ (1985). Tooth discoloration induced by dental materials. Oral Surg Oral Med Oral Pathol 60, 666–669.
70. van der Burgt TP, Mullaney TP and Plasschaert AJ (1986). Tooth discoloration induced by endodontic sealers. Oral Surg Oral Med Oral Pathol 61, 84–89.
71. von der Fehr, FR, Loe H, Theilade E (1970). Experimentalcaries in man. Caries Res. 4, 131-148.
72. Wei X, Ling J, Wu L, Liu L, Xiao Y (2007). Expression of mineralization markers in dental pulp cells. J Endod 33(6):703-8.
73. Wurtz T, Houari S, Mauro N, MacDougall M, Peters H, Berdal A (2008). Fluoride at non-toxic dose affects odontoblast gene expression in vitro.Toxicology 10;249(1):26-34.
74. Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, et al. (2001). Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 27:201–204.
75. Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, et al. (1998). Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82.
76. Yamamura T (1985). Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J Dent Res 64: 530–540.
77. Yamauchi M, Chandler GS and Katz EP (1992). Collagen cross.linking and mineralization. In Chemistry and Biology of Mineralized Tissues (Eds H. Slavkin and P.A. Price). Elsevier, New York, 39-46.
78. Zhang W, Walboomers XF, Wolke JG, Bian Z, Fan MW and Jansen JA (2005). Differentiation ability of rat postnatal dental pulp cells in vitro. Tissue Eng 11
79. Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, et al. (2001). DSPP mutation in dentinogenesis imperfecta Shields type II. Nat Genet 27:151–152.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23236-
dc.description.abstract氟素在牙科公共衛生上的應用已經持續很長的一段時間。氟對於預防孩童齲齒的發生是很重要,也是很有效的一個藥物。另一方面因為氟可以刺激骨母細胞的增生以及刺激骨組織的形成,氟素也被拿來當作治療骨質疏鬆症。在即將脫落的乳牙牙髓組織中,存在多能力的幹細胞。而這些幹細胞具有高度增生及分化能力的特性,並且可分化成為牙本質母細胞。然而氟對於乳牙牙髓細胞作用的毒性或是其作用的角色都尚未清楚。所以本實驗的主要目的是觀察氟化鈉對於體外培養乳牙牙髓細胞其生長能力和礦化基因表現的影響 。
乳牙牙髓細胞是以2.5x104cell/cm2的密度培養於含氟化鈉濃度為0, 10-6, 10-5, 10-4, 5x10-4及10-3M之培養液來進行MTT測試觀察細胞生長的情形。另外將乳牙牙髓細胞同樣以密度培養於0, 10-6, 10-5, 10-4 及 5x10-4M並和培養於牙本質細胞誘導礦化培養液中的細胞進行鹼性磷酸酶(alkaline phosphatase)、鈣化能力以及礦化基因表現的比較。
在MTT測試中,發現到當氟化鈉的濃度為10-3M,乳牙牙髓細胞在培養的第1天以及第3天其細胞生長的活性是受到限制。然而在培養的第10天,在含氟化鈉培養基的細胞,其生長活性高於控制組。在鹼性磷酸酶活性試驗中,在培養的第5天和第7天,含氟化鈉培養基的細胞,其活性都低於控制組;然而到了第14天,有接受氟化鈉刺激的細胞,其活性超越控制組。在礦化基因表現,在培養第7天和第10天,鹼性磷酸酶基因的表現低於控制組和牙本質細胞誘導礦化組;於培養第14天,鹼性磷酸酶基因的表現則會高於控制組。在骨鈣蛋白基因表現,於培養的第7天,於含氟化鈉培養基中的細胞其表現較弱;然而第14天含有氟化鈉培養基中的細胞基因的表現則高於控制組。由以上的結果可以推論,氟化鈉確實會影響乳牙牙髓細胞的生長以及礦化表現,氟化鈉對於調控乳牙牙髓細胞生長及礦化基因的表現仍需做進一步的研究。
zh_TW
dc.description.abstractThe use of fluorides in dental public health programs has a long history. Fluoride is an important and effective factor for reducing the caries incidence in children. Fluoride also increases proliferation of osteoblasts and stimulates bone formation. Exfoliated human deciduous tooth contains multipotent stem cells in the pulp tisuue. These cells were identified to be a population of highly proliferative, clonogenic cells capable of differentiating into odontoblasts. However the cellular and molecular pathways of fluoride toxicity in pulp cells derived exfoliated deciduous teeth are not very well understood. The objective of the present study was to evaluate the effects of sodium fluoride (NaF) on pulp cells derived from exfoliated deciduous teeth cultured in vitro.
Pulp cells at 2.5x104cell/cm2 were incubated in vitro with NaF at 0, 10-6, 10-5, 10-4, 5x10-4 and 10-3M and MTT test was examined. Pulp cells at 2.5x104cells/cm2 in density were also incubated in vitro with NaF at 0, 10-6, 10-5, 10-4 and 5x10-4M compared to odontogenic induction medium, and then the ALP activity, calcification and mineralization were examined.
A cell based quantitative evaluation of the MTT assay showed that NaF at concentration of 10-3M arrested cell growth on day 1 and day 3. Whereas the MTT assay showed that higher proliferative rate treated with NaF versus control on day 10. Alkaline phosphatase activity decreased in cells treated with NaF on day 5 and day 7 versus control. On day 14, cells treated with NaF had higher alkaline phosphatase activity than control. The gene of alkaline phosphatase expression in cells treated with NaF decreased on day 7 and day 10 versus control and induction group but enhanced on day 14. Osteocalcin expression of NaF treated cells decreased on day 7 versus control but enhanced on day 14. In conclusion, results of this study indicated that NaF modulates proliferation and mineralization pulp cells derived from exfoliated deciduous teeth proliferation and mineralization. This findings suggest that NaF may play a significant role in pulp cells physiology.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:49:03Z (GMT). No. of bitstreams: 1
ntu-98-R95422006-1.pdf: 56273007 bytes, checksum: c81684ce780f5e03dc07ba95a211c4f4 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 V
Abstract VII
第一章 引言 1
第二章 文獻回顧 2
第一節 牙髓組織 2
1.1 牙髓組織的組成及功能 2
1.2 牙髓再生 3
1.3 牙髓幹細胞 4
第二節 氟化物 5
2.1 氟在牙科的應用 5
2.2 氟對其他細胞的影響 7
第三節 細胞分化和成骨指標蛋白基因的表現 8
3.1 鹼性磷酸酶(Alkaline phosphatase,ALP) 9
3.2 骨鈣蛋白(Osteocalcin,OCN) 10
3.3 牙本質涎磷蛋白(Dentin sialophosphoprotein,DSPP) 11
第三章 實驗目的 13
第四章 研究材料與方法 14
第一節 所使用的細胞及細胞培養條件 14
1.1 人類乳牙牙髓組織的取得 14
1.2 培養牙髓細胞之先關藥品配製 14
1.3 乳牙牙髓細胞之培養 15
第二節 氟化鈉(So d i um F l uo ri de , Na F)對於乳牙牙髓細胞生長能力實驗 15
2.1 含氟化鈉細胞培養液之配製 15
2.2 MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide)測試 15
第三節 氟化鈉(So d i um F l uo ri de , Na F)對於乳牙牙髓細胞誘導分化實驗 16
3.1 牙本質母細胞誘導分化培養液之配製 16
3.2 鹼性磷酸酶 (Alkaline Phosphatase , ALP)活性 16
3.3 Alizarin Red Stain 18
3.5 反轉錄聚合酶連鎖反應 (Reverse Transcription-Polymerase Chain Reaction,RTPCR 19
第四節 統計分析 22
第五章 實驗結果 23
第一節 人類乳牙牙髓細胞之培養 23
1.1 人類乳牙牙髓細胞進行流式細胞儀分析 (Flow cytometry) 23
第二節 氟化鈉對乳牙牙髓細胞生長能力試驗 23
第三節 氟化鈉對乳牙牙髓細胞礦化能力試驗 23
3.1 鹼性磷酸酶染色之結果 23
3.2 鹼性磷酸酶活性定量試驗結果 24
3.3 Alizarin red stain 結果 25
3.4 反轉錄聚合酶連鎖反應 (Reverse Transcription-Polymerase Chain Reaction,RTPCR 25
3.5 即時定量聚合酶連鎖反應(Real-time PCR). 26
第六章 討論 28
第一節 人類乳牙牙髓細胞的培養 2 8
第二節 人類乳牙牙髓細胞之間質幹細胞表面標幟 2 8
第三節 氟化鈉對乳牙牙髓細胞生長的影響 2 9
第四節 鹼性磷酸酶活性測試和鹼性磷酸酶染色試驗 3 1
第五節 A l iz a r i n R e d St a i n 3 2
第六節 反轉錄聚合酶連鎖反應和即時定量聚合酶連鎖反應 3 4
6.1 鹼性磷酸酶(Alkaline phosphatase, ALP) 35
6.2 骨鈣蛋白(Osteocalcin, OCN) 35
6.3 第一型膠原蛋白(Collagen Type I,COL type I) 36
6.4 牙本質涎磷蛋白(dentin sialophosphoprotein,DSPP) 36
第七章 結論 38
第八章 未來研究方向 39
參考文獻 40
dc.language.isozh-TW
dc.subject牙髓細胞zh_TW
dc.subject氟化鈉zh_TW
dc.subject乳牙zh_TW
dc.subject礦化zh_TW
dc.subject牙本質分化zh_TW
dc.subjectodontogenic differentiationen
dc.subjectSodium fluorideen
dc.subjectpulp cellsen
dc.subjectexfoliated deciduous teethen
dc.subjectmineralizationen
dc.title氟化鈉對乳牙牙髓細胞生長以及礦化基因表現的調控zh_TW
dc.titleRegulation of growth and mineralizing genes expression by sodium fluoride in pulp cells from human exfoliated deciduous teethen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor郭敏光
dc.contributor.oralexamcommittee林俊彬,楊台鴻
dc.subject.keyword氟化鈉,牙髓細胞,乳牙,礦化,牙本質分化,zh_TW
dc.subject.keywordSodium fluoride,pulp cells,exfoliated deciduous teeth,mineralization,odontogenic differentiation,en
dc.relation.page71
dc.rights.note未授權
dc.date.accepted2009-07-28
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
54.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved