請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23234完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Chiu-Chun Lin | en |
| dc.contributor.author | 林秋君 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:48:56Z | - |
| dc.date.copyright | 2009-07-30 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L. and Wrana, J. L. (1997). TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272, 27678-85.
Adachi-Yamada, T., Nakamura, M., Irie, K., Tomoyasu, Y., Sano, Y., Mori, E., Goto, S., Ueno, N., Nishida, Y. and Matsumoto, K. (1999). p38 mitogen-activated protein kinase can be involved in transforming growth factor beta superfamily signal transduction in Drosophila wing morphogenesis. Mol Cell Biol 19, 2322-9. Adams, R. H., Porras, A., Alonso, G., Jones, M., Vintersten, K., Panelli, S., Valladares, A., Perez, L., Klein, R. and Nebreda, A. R. (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6, 109-16. Aravind, L. and Koonin, E. V. (1998). A colipase fold in the carboxy-terminal domain of the Wnt antagonists--the Dickkopfs. Curr Biol 8, R477-8. Aulehla, A. and Herrmann, B. G. (2004). Segmentation in vertebrates: clock and gradient finally joined. Genes Dev 18, 2060-7. Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B. and Herrmann, B. G. (2003). Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 4, 395-406. Bandyopadhyay, A., Tsuji, K., Cox, K., Harfe, B. D., Rosen, V. and Tabin, C. J. (2006). Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2, e216. Barrantes Idel, B., Montero-Pedrazuela, A., Guadano-Ferraz, A., Obregon, M. J., Martinez de Mena, R., Gailus-Durner, V., Fuchs, H., Franz, T. J., Kalaydjiev, S., Klempt, M. et al. (2006). Generation and characterization of dickkopf3 mutant mice. Mol Cell Biol 26, 2317-26. Barrow, J. R., Thomas, K. R., Boussadia-Zahui, O., Moore, R., Kemler, R., Capecchi, M. R. and McMahon, A. P. (2003). Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 17, 394-409. Berkes, C. A. and Tapscott, S. J. (2005). MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16, 585-95. Birsoy, B., Kofron, M., Schaible, K., Wylie, C. and Heasman, J. (2006). Vg 1 is an essential signaling molecule in Xenopus development. Development 133, 15-20. Borycki, A. G., Brunk, B., Tajbakhsh, S., Buckingham, M., Chiang, C. and Emerson, C. P., Jr. (1999). Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 126, 4053-63. Brott, B. K. and Sokol, S. Y. (2002). Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol Cell Biol 22, 6100-10. Brunet, A. and Pouyssegur, J. (1997). Mammalian MAP kinase modules: how to transduce specific signals. Essays Biochem 32, 1-16. Caricasole, A., Ferraro, T., Iacovelli, L., Barletta, E., Caruso, A., Melchiorri, D., Terstappen, G. C. and Nicoletti, F. (2003). Functional characterization of WNT7A signaling in PC12 cells: interaction with A FZD5 x LRP6 receptor complex and modulation by Dickkopf proteins. J Biol Chem 278, 37024-31. Chen, Y., Lin, G. F., Hu, R. and Ding, X. (2003a). Activin/Nodal signals mediate the ventral expression of myf-5 in Xenopus gastrula embryos. Biochem Biophys Res Commun 310, 121-7. Chen, Y. H., Lee, H. C., Liu, C. F., Lin, C. Y. and Tsai, H. J. (2003b). Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5. Dev Dyn 228, 41-50. Chen, Y. H., Lee, W. C., Liu, C. F. and Tsai, H. J. (2001). Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29, 22-35. Chen, Y. H., Wang, Y. H., Chang, M. Y., Lin, C. Y., Weng, C. W., Westerfield, M. and Tsai, H. J. (2007). Multiple upstream modules regulate zebrafish myf5 expression. BMC Dev Biol 7, 1. Choi, J., Costa, M. L., Mermelstein, C. S., Chagas, C., Holtzer, S. and Holtzer, H. (1990). MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci U S A 87, 7988-92. Church, V. L. and Francis-West, P. (2002). Wnt signalling during limb development. Int J Dev Biol 46, 927-36. Cossu, G., Tajbakhsh, S. and Buckingham, M. (1996). How is myogenesis initiated in the embryo? Trends Genet 12, 218-23. Coutelle, O., Blagden, C. S., Hampson, R., Halai, C., Rigby, P. W. and Hughes, S. M. (2001). Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev Biol 236, 136-50. Cuenda, A. and Cohen, P. (1999). Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem 274, 4341-6. Cuenda, A., Cohen, P., Buee-Scherrer, V. and Goedert, M. (1997). Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J 16, 295-305. Davis, R. L., Weintraub, H. and Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000. de Angelis, L., Zhao, J., Andreucci, J. J., Olson, E. N., Cossu, G. and McDermott, J. C. (2005). Regulation of vertebrate myotome development by the p38 MAP kinase-MEF2 signaling pathway. Dev Biol 283, 171-9. de la Serna, I. L., Carlson, K. A. and Imbalzano, A. N. (2001). Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27, 187-90. de la Serna, I. L., Ohkawa, Y., Berkes, C. A., Bergstrom, D. A., Dacwag, C. S., Tapscott, S. J. and Imbalzano, A. N. (2005). MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 25, 3997-4009. De Robertis, E. M. and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20, 285-308. Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S. and Gauthier, J. M. (1998). Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17, 3091-100. Descargues, P., Sil, A. K., Sano, Y., Korchynskyi, O., Han, G., Owens, P., Wang, X. J. and Karin, M. (2008). IKKalpha is a critical coregulator of a Smad4-independent TGFbeta-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci U S A 105, 2487-92. Dick, A., Mayr, T., Bauer, H., Meier, A. and Hammerschmidt, M. (2000). Cloning and characterization of zebrafish smad2, smad3 and smad4. Gene 246, 69-80. Dziembowska, M., Danilkiewicz, M., Wesolowska, A., Zupanska, A., Chouaib, S. and Kaminska, B. (2007). Cross-talk between Smad and p38 MAPK signalling in transforming growth factor beta signal transduction in human glioblastoma cells. Biochem Biophys Res Commun 354, 1101-6. Edmondson, D. G. and Olson, E. N. (1989). A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3, 628-40. Eickelberg, O. and Morty, R. E. (2007). Transforming growth factor beta/bone morphogenic protein signaling in pulmonary arterial hypertension: remodeling revisited. Trends Cardiovasc Med 17, 263-9. Engelman, J. A., Berg, A. H., Lewis, R. Y., Lin, A., Lisanti, M. P. and Scherer, P. E. (1999). Constitutively active mitogen-activated protein kinase kinase 6 (MKK6) or salicylate induces spontaneous 3T3-L1 adipogenesis. J Biol Chem 274, 35630-8. Engelman, J. A., Lisanti, M. P. and Scherer, P. E. (1998). Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem 273, 32111-20. Fan, G., Merritt, S. E., Kortenjann, M., Shaw, P. E. and Holzman, L. B. (1996). Dual leucine zipper-bearing kinase (DLK) activates p46SAPK and p38mapk but not ERK2. J Biol Chem 271, 24788-93. Feldman, B., Gates, M. A., Egan, E. S., Dougan, S. T., Rennebeck, G., Sirotkin, H. I., Schier, A. F. and Talbot, W. S. (1998). Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181-5. Feng, X. H. and Derynck, R. (2005). Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21, 659-93. Feng, X. H., Lin, X. and Derynck, R. (2000). Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J 19, 5178-93. Feng, X. H., Zhang, Y., Wu, R. Y. and Derynck, R. (1998). The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 12, 2153-63. Fujii, R., Yamashita, S., Hibi, M. and Hirano, T. (2000). Asymmetric p38 activation in zebrafish: its possible role in symmetric and synchronous cleavage. J Cell Biol 150, 1335-48. Galbiati, F., Volonte, D., Engelman, J. A., Scherer, P. E. and Lisanti, M. P. (1999). Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem 274, 30315-21. Galcheva-Gargova, Z., Derijard, B., Wu, I. H. and Davis, R. J. (1994). An osmosensing signal transduction pathway in mammalian cells. Science 265, 806-8. Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., Ulevitch, R. J., Luo, Y. and Han, J. (2002). MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science 295, 1291-4. Glinka, A., Wu, W., Delius, H., Monaghan, A. P., Blumenstock, C. and Niehrs, C. (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357-62. Gore, A. V., Maegawa, S., Cheong, A., Gilligan, P. C., Weinberg, E. S. and Sampath, K. (2005). The zebrafish dorsal axis is apparent at the four-cell stage. Nature 438, 1030-5. Graff, J. M., Bansal, A. and Melton, D. A. (1996). Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell 85, 479-87. Groppe, J., Hinck, C. S., Samavarchi-Tehrani, P., Zubieta, C., Schuermann, J. P., Taylor, A. B., Schwarz, P. M., Wrana, J. L. and Hinck, A. P. (2008). Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Mol Cell 29, 157-68. Guder, C., Pinho, S., Nacak, T. G., Schmidt, H. A., Hobmayer, B., Niehrs, C. and Holstein, T. W. (2006). An ancient Wnt-Dickkopf antagonism in Hydra. Development 133, 901-11. Gum, R. J., McLaughlin, M. M., Kumar, S., Wang, Z., Bower, M. J., Lee, J. C., Adams, J. L., Livi, G. P., Goldsmith, E. J. and Young, P. R. (1998). Acquisition of sensitivity of stress-activated protein kinases to the p38 inhibitor, SB 203580, by alteration of one or more amino acids within the ATP binding pocket. J Biol Chem 273, 15605-10. Guo, C. S., Degnin, C., Fiddler, T. A., Stauffer, D. and Thayer, M. J. (2003). Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J Biol Chem 278, 22615-22. Gustafsson, M. K., Pan, H., Pinney, D. F., Liu, Y., Lewandowski, A., Epstein, D. J. and Emerson, C. P., Jr. (2002). Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev 16, 114-26. Halevy, O., Novitch, B. G., Spicer, D. B., Skapek, S. X., Rhee, J., Hannon, G. J., Beach, D. and Lassar, A. B. (1995). Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267, 1018-21. Halloran, M. C., Sato-Maeda, M., Warren, J. T., Su, F., Lele, Z., Krone, P. H., Kuwada, J. Y. and Shoji, W. (2000). Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127, 1953-60. Han, J., Jiang, Y., Li, Z., Kravchenko, V. V. and Ulevitch, R. J. (1997). Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296-9. Hanai, J., Chen, L. F., Kanno, T., Ohtani-Fujita, N., Kim, W. Y., Guo, W. H., Imamura, T., Ishidou, Y., Fukuchi, M., Shi, M. J. et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem 274, 31577-82. Hashimoto, H., Itoh, M., Yamanaka, Y., Yamashita, S., Shimizu, T., Solnica-Krezel, L., Hibi, M. and Hirano, T. (2000). Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 217, 138-52. He, X., Semenov, M., Tamai, K. and Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131, 1663-77. Heldin, C. H., Miyazono, K. and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-71. Her, J. H., Lakhani, S., Zu, K., Vila, J., Dent, P., Sturgill, T. W. and Weber, M. J. (1993). Dual phosphorylation and autophosphorylation in mitogen-activated protein (MAP) kinase activation. Biochem J 296 ( Pt 1), 25-31. Hirai, S., Katoh, M., Terada, M., Kyriakis, J. M., Zon, L. I., Rana, A., Avruch, J. and Ohno, S. (1997). MST/MLK2, a member of the mixed lineage kinase family, directly phosphorylates and activates SEK1, an activator of c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem 272, 15167-73. Hirsinger, E., Duprez, D., Jouve, C., Malapert, P., Cooke, J. and Pourquie, O. (1997). Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 124, 4605-14. Hoang, B. H., Kubo, T., Healey, J. H., Yang, R., Nathan, S. S., Kolb, E. A., Mazza, B., Meyers, P. A. and Gorlick, R. (2004). Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 64, 2734-9. Holloway, B. A., Gomez de la Torre Canny, S., Ye, Y., Slusarski, D. C., Freisinger, C. M., Dosch, R., Chou, M. M., Wagner, D. S. and Mullins, M. C. (2009). A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PLoS Genet 5, e1000413. Hoodless, P. A., Tsukazaki, T., Nishimatsu, S., Attisano, L., Wrana, J. L. and Thomsen, G. H. (1999). Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. Dev Biol 207, 364-79. Hopwood, N. D., Pluck, A. and Gurdon, J. B. (1991). Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos. Development 111, 551-60. Hsieh, S. Y., Hsieh, P. S., Chiu, C. T. and Chen, W. Y. (2004). Dickkopf-3/REIC functions as a suppressor gene of tumor growth. Oncogene 23, 9183-9. Hu, M. C., Wang, Y. P., Mikhail, A., Qiu, W. R. and Tan, T. H. (1999). Murine p38-delta mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines. J Biol Chem 274, 7095-102. Huh, M. S., Parker, M. H., Scime, A., Parks, R. and Rudnicki, M. A. (2004). Rb is required for progression through myogenic differentiation but not maintenance of terminal differentiation. J Cell Biol 166, 865-76. Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K. and Gotoh, Y. (1997). Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90-4. Ikeya, M. and Takada, S. (1998). Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125, 4969-76. Iwasaki, S., Iguchi, M., Watanabe, K., Hoshino, R., Tsujimoto, M. and Kohno, M. (1999). Specific activation of the p38 mitogen-activated protein kinase signaling pathway and induction of neurite outgrowth in PC12 cells by bone morphogenetic protein-2. J Biol Chem 274, 26503-10. Jia, S., Ren, Z., Li, X., Zheng, Y. and Meng, A. (2008). smad2 and smad3 are required for mesendoderm induction by transforming growth factor-beta/nodal signals in zebrafish. J Biol Chem 283, 2418-26. Jiang, Y., Gram, H., Zhao, M., New, L., Gu, J., Feng, L., Di Padova, F., Ulevitch, R. J. and Han, J. (1997). Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem 272, 30122-8. Jonk, L. J., Itoh, S., Heldin, C. H., ten Dijke, P. and Kruijer, W. (1998). Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem 273, 21145-52. Josso, N., Picard, J. Y., Rey, R. and di Clemente, N. (2006). Testicular anti-Mullerian hormone: history, genetics, regulation and clinical applications. Pediatr Endocrinol Rev 3, 347-58. Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270, 16483-6. Kawai-Kowase, K. and Owens, G. K. (2007). Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292, C59-69. Kawano, Y., Kitaoka, M., Hamada, Y., Walker, M. M., Waxman, J. and Kypta, R. M. (2006). Regulation of prostate cell growth and morphogenesis by Dickkopf-3. Oncogene 25, 6528-37. Kawano, Y. and Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116, 2627-34. Keesler, G. A., Bray, J., Hunt, J., Johnson, D. A., Gleason, T., Yao, Z., Wang, S. W., Parker, C., Yamane, H., Cole, C. et al. (1998). Purification and activation of recombinant p38 isoforms alpha, beta, gamma, and delta. Protein Expr Purif 14, 221-8. Keren, A., Bengal, E. and Frank, D. (2005). p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development. Dev Biol 288, 73-86. Keren, A., Tamir, Y. and Bengal, E. (2006). The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 252, 224-30. Kim, J., Johnson, K., Chen, H. J., Carroll, S. and Laughon, A. (1997). Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304-8. Kimura-Yoshida, C., Nakano, H., Okamura, D., Nakao, K., Yonemura, S., Belo, J. A., Aizawa, S., Matsui, Y. and Matsuo, I. (2005). Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev Cell 9, 639-50. Kitzmann, M. and Fernandez, A. (2001). Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci 58, 571-9. Kolodziejczyk, S. M., Wang, L., Balazsi, K., DeRepentigny, Y., Kothary, R. and Megeney, L. A. (1999). MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr Biol 9, 1203-6. Krens, S. F., He, S., Spaink, H. P. and Snaar-Jagalska, B. E. (2006). Characterization and expression patterns of the MAPK family in zebrafish. Gene Expr Patterns 6, 1019-26. Kretzschmar, M. and Massague, J. (1998). SMADs: mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev 8, 103-11. Krupnik, V. E., Sharp, J. D., Jiang, C., Robison, K., Chickering, T. W., Amaravadi, L., Brown, D. E., Guyot, D., Mays, G., Leiby, K. et al. (1999). Functional and structural diversity of the human Dickkopf gene family. Gene 238, 301-13. Kunwar, P. S., Zimmerman, S., Bennett, J. T., Chen, Y., Whitman, M. and Schier, A. F. (2003). Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development 130, 5589-99. Kuphal, S., Lodermeyer, S., Bataille, F., Schuierer, M., Hoang, B. H. and Bosserhoff, A. K. (2006). Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene 25, 5027-36. Kurose, K., Sakaguchi, M., Nasu, Y., Ebara, S., Kaku, H., Kariyama, R., Arao, Y., Miyazaki, M., Tsushima, T., Namba, M. et al. (2004). Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. J Urol 171, 1314-8. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J. and Woodgett, J. R. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156-60. Lassar, A. B., Davis, R. L., Wright, W. E., Kadesch, T., Murre, C., Voronova, A., Baltimore, D. and Weintraub, H. (1991). Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66, 305-15. Lechner, C., Zahalka, M. A., Giot, J. F., Moller, N. P. and Ullrich, A. (1996). ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci U S A 93, 4355-9. Lee, H. C., Huang, H. Y., Lin, C. Y., Chen, Y. H. and Tsai, H. J. (2006). Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev Biol 290, 359-72. Lee, L. F., Li, G., Templeton, D. J. and Ting, J. P. (1998). Paclitaxel (Taxol)-induced gene expression and cell death are both mediated by the activation of c-Jun NH2-terminal kinase (JNK/SAPK). J Biol Chem 273, 28253-60. Levy, L. and Hill, C. S. (2005). Smad4 dependency defines two classes of transforming growth factor {beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 25, 8108-25. Li, L., Mao, J., Sun, L., Liu, W. and Wu, D. (2002). Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled. J Biol Chem 277, 5977-81. Li, X., Liu, P., Liu, W., Maye, P., Zhang, J., Zhang, Y., Hurley, M., Guo, C., Boskey, A., Sun, L. et al. (2005). Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 37, 945-52. Li, Z., Jiang, Y., Ulevitch, R. J. and Han, J. (1996). The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun 228, 334-40. Lin, C. Y., Chen, Y. H., Lee, H. C. and Tsai, H. J. (2004). Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene 334, 63-72. Lin, X., Liang, M., Liang, Y. Y., Brunicardi, F. C. and Feng, X. H. (2003a). SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem 278, 31043-8. Lin, X., Liang, M., Liang, Y. Y., Brunicardi, F. C., Melchior, F. and Feng, X. H. (2003b). Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J Biol Chem 278, 18714-9. Link, V., Shevchenko, A. and Heisenberg, C. P. (2006). Proteomics of early zebrafish embryos. BMC Dev Biol 6, 1. Little, S. C. and Mullins, M. C. (2006). Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res C Embryo Today 78, 224-42. Liu, F., Pouponnot, C. and Massague, J. (1997). Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 11, 3157-67. Lluis, F., Ballestar, E., Suelves, M., Esteller, M. and Munoz-Canoves, P. (2005). E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J 24, 974-84. Lodygin, D., Epanchintsev, A., Menssen, A., Diebold, J. and Hermeking, H. (2005). Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 65, 4218-27. MacDonald, B. T., Adamska, M. and Meisler, M. H. (2004). Hypomorphic expression of Dkk1 in the doubleridge mouse: dose dependence and compensatory interactions with Lrp6. Development 131, 2543-52. Mao, B. and Niehrs, C. (2003). Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302, 179-83. Mao, B., Wu, W., Davidson, G., Marhold, J., Li, M., Mechler, B. M., Delius, H., Hoppe, D., Stannek, P., Walter, C. et al. (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664-7. Marcelle, C., Stark, M. R. and Bronner-Fraser, M. (1997). Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development 124, 3955-63. Maroto, M., Reshef, R., Munsterberg, A. E., Koester, S., Goulding, M. and Lassar, A. B. (1997). Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89, 139-48. Massague, J. (1998). TGF-beta signal transduction. Annu Rev Biochem 67, 753-91. Massague, J. and Wotton, D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19, 1745-54. McKinsey, T. A. and Olson, E. N. (1999). Cardiac hypertrophy: sorting out the circuitry. Curr Opin Genet Dev 9, 267-74. Mercado-Pimentel, M. E. and Runyan, R. B. (2007). Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185, 146-56. Messeguer, X., Escudero, R., Farre, D., Nunez, O., Martinez, J. and Alba, M. M. (2002). PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18, 333-4. Miner, J. H. and Wold, B. (1990). Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A 87, 1089-93. Miyazono, K., ten Dijke, P. and Heldin, C. H. (2000). TGF-beta signaling by Smad proteins. Adv Immunol 75, 115-57. Molkentin, J. D., Black, B. L., Martin, J. F. and Olson, E. N. (1995). Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125-36. Monaghan, A. P., Kioschis, P., Wu, W., Zuniga, A., Bock, D., Poustka, A., Delius, H. and Niehrs, C. (1999). Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech Dev 87, 45-56. Moriguchi, T., Kuroyanagi, N., Yamaguchi, K., Gotoh, Y., Irie, K., Kano, T., Shirakabe, K., Muro, Y., Shibuya, H., Matsumoto, K. et al. (1996). A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J Biol Chem 271, 13675-9. Morisato, D. and Anderson, K. V. (1995). Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 29, 371-99. Morooka, T. and Nishida, E. (1998). Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J Biol Chem 273, 24285-8. Morrell, N. W. (2006). Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3, 680-6. Mukhopadhyay, M., Gorivodsky, M., Shtrom, S., Grinberg, A., Niehrs, C., Morasso, M. I. and Westphal, H. (2006). Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium. Development 133, 2149-54. Mukhopadhyay, M., Shtrom, S., Rodriguez-Esteban, C., Chen, L., Tsukui, T., Gomer, L., Dorward, D. W., Glinka, A., Grinberg, A., Huang, S. P. et al. (2001). Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1, 423-34. Nagata, Y., Takahashi, N., Davis, R. J. and Todokoro, K. (1998). Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood 92, 1859-69. Nakamura, K., Shirai, T., Morishita, S., Uchida, S., Saeki-Miura, K. and Makishima, F. (1999). p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res 250, 351-63. Nakamura, R. E., Hunter, D. D., Yi, H., Brunken, W. J. and Hackam, A. S. (2007). Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina. BMC Cell Biol 8, 52. Natale, D. R., Paliga, A. J., Beier, F., D'Souza, S. J. and Watson, A. J. (2004). p38 MAPK signaling during murine preimplantation development. Dev Biol 268, 76-88. Niehrs, C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469-81. Nishihara, A., Hanai, J. I., Okamoto, N., Yanagisawa, J., Kato, S., Miyazono, K. and Kawabata, M. (1998). Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells 3, 613-23. Novitch, B. G., Spicer, D. B., Kim, P. S., Cheung, W. L. and Lassar, A. B. (1999). pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol 9, 449-59. Nozaki, I., Tsuji, T., Iijima, O., Ohmura, Y., Andou, A., Miyazaki, M., Shimizu, N. and Namba, M. (2001). Reduced expression of REIC/Dkk-3 gene in non-small cell lung cancer. Int J Oncol 19, 117-21. Nusse, R. (2001). Developmental biology. Making head or tail of Dickkopf. Nature 411, 255-6. O'Connor, M. B., Umulis, D., Othmer, H. G. and Blair, S. S. (2006). Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 133, 183-93. Ohshima, T. and Shimotohno, K. (2003). Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J Biol Chem 278, 50833-42. Ott, M. O., Bober, E., Lyons, G., Arnold, H. and Buckingham, M. (1991). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111, 1097-107. Penn, B. H., Bergstrom, D. A., Dilworth, F. J., Bengal, E. and Tapscott, S. J. (2004). A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev 18, 2348-53. Perdiguero, E., Ruiz-Bonilla, V., Gresh, L., Hui, L., Ballestar, E., Sousa-Victor, P., Baeza-Raja, B., Jardi, M., Bosch-Comas, A., Esteller, M. et al. (2007). Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J 26, 1245-56. Pinho, S. and Niehrs, C. (2007). Dkk3 is required for TGF-beta signaling during Xenopus mesoderm induction. Differentiation 75, 957-67. Pinsky, B. A. and Biggins, S. (2002). Top-SUMO wrestles centromeric cohesion. Dev Cell 3, 4-6. Pogoda, H. M. and Meyer, D. (2002). Zebrafish Smad7 is regulated by Smad3 and BMP signals. Dev Dyn 224, 334-49. Puri, P. L., Iezzi, S., Stiegler, P., Chen, T. T., Schiltz, R. L., Muscat, G. E., Giordano, A., Kedes, L., Wang, J. Y. and Sartorelli, V. (2001). Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 8, 885-97. Puri, P. L., Wu, Z., Zhang, P., Wood, L. D., Bhakta, K. S., Han, J., Feramisco, J. R., Karin, M. and Wang, J. Y. (2000). Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 14, 574-84. Qin, B. Y., Chacko, B. M., Lam, S. S., de Caestecker, M. P., Correia, J. J. and Lin, K. (2001). Structural basis of Smad1 activation by receptor kinase phosphorylation. Mol Cell 8, 1303-12. Qing, J., Zhang, Y. and Derynck, R. (2000). Structural and functional characterization of the transforming growth factor-beta -induced Smad3/c-Jun transcriptional cooperativity. J Biol Chem 275, 38802-12. Rao, S. S., Chu, C. and Kohtz, D. S. (1994). Ectopic e | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23234 | - |
| dc.description.abstract | Myf5 是肌肉發育 (myogenesis) 調控因子MRFs (myogenic regulatory factors) 的一員,對於肌肉的特化及分化都具有重要的功能。在斑馬魚myf5 intron I 中含有一個 microRNA,命名為miR-In300,它能夠結合dickkopf 3 (dkk3) 3’UTR並抑制其轉錄作用,進而負調控 myf5 表達影響肌肉發育。但 Dkk3 是一種分泌性蛋白質,它是藉由何種調控路徑來影響 myf5 的表達尚不清楚。在本實驗中我們發現抑制 Dkk3 會造成磷酸化的p38a蛋白質下降;注射 p38a 專一轉譯抑制劑 (morpholino, MO) knockdown p38a 的表現後,發現胚胎體節形狀不正常,且 myf5 mRNA表達較少,這些表型和注射dkk3-MO 的胚胎類似,且利用dominant-negative form 的p38a 競爭也得到相同的結果。利用 p38 inhibitor (SB203580) 抑制 p38 磷酸化阻斷MAPK pathway亦會造成myf5下降。當注射p38a-MO到帶有 myf5上游 80kb 啟動子驅動 GFP 的斑馬魚轉殖品系Tg(myf5(80K):GFP) 之胚胎後,會造成myf5啟動子驅動GFP的表現能力下降。若額外添加 p38a mRNA就可以挽救因注射p38a-MO所造成綠螢光表現下降的缺陷,但若額外添加磷酸化位點突變的 p38a mRNA則無法達到挽救的效果。這些結果證明 p38a 是經由磷酸化作用來調控 myf5啟動子的活性。另一方面,加入dominant-negative form 的Smad2及Smad3a 後,胚胎體節發育不正常且 myf5 表現下降,這和注射dkk3-MO及p38a-MO的胚胎有類似的表型。利用 luciferase assay 及注射 smad2/3a/3b/4 mRNA 到Tg(myf5(80K):GFP) 轉殖品系的胚胎,發現過量表現 Smad2 及Smad3a 會增強myf5 啟動子的活性;更進一步地,利用Chromatin immunoprecipitation assay 證實 Smad3a 可直接結合到 myf5 啟動子上,藉由 Smad2/3a complex 開啟 myf5 的啟動子。而當抑制 Dkk3 或 p38a 時,Smad4 蛋白質表現會下降而Smad3蛋白質量不改變;且過量表現 smad4 mRNA可以挽救 dkk3-MO 造成 myf5 下降的情形。綜合上述證據,我們總結 Dkk3 藉由調控 p38a 的磷酸化來維持 Smad4 蛋白質穩定性,進而使 Smad4 能與 Smad2/3a 形成complex 來開啟斑馬魚 myf5 的啟動子。 | zh_TW |
| dc.description.abstract | Myf5, one of the myogenic regulatory factors, plays roles in the specification and differentiation of muscular cells during myogenesis. An intronic microRNA, miR-In300, located within zebrafish myf5 intron I, has been reported to silence myf5 through targeting dkk3. However, the detailed molecular mechanism underlying how the secreted Dkk3 controls the myf5 expression is totally unknown. In this study, we found that knockdown of dkk3 reduced the protein level of the phosphorylated p38a. Injection of p38a-specific morphorlino (MO), which inhibits the translation of p38a mRNA, resulted that the malformed somites and the reduced myf5 transcripts, which photocopied the defects induced by injection of dkk3-MO. These phenotypes were also observed in the embryos injected with the dominant-negative form of p38a. Blocking the MAPK pathway through interfering the phosphorylation of p38 by introducing SB203580 caused the down-regulation of myf5 expression. Furthermore, the GFP fluorescent signal was dramatically decreased when we injected p38a-MO into the embryos derived from transgenic line Tg(myf5(80K):GFP), in which the GFP was driven by myf5 promoter. This p38a-MO-induced defects were rescued by co-injection with p38a mRNA, but were not rescued with the mutated p38a mRNA containing a mutation at phosphorylation domain. This line of evidences suggested that the phosphorylation of p38a is required for activating of myf5 promoter activity. Moreover, the defective phenotypes induced by injection the dominant-negative form of either Smad2 or Smad3 were as same as those of embryos injected with either dkk3- or p38a-MO. Using luciferase assay and injection of samd2/3a/4 mRNA in the embryos derived from Tg(myf5(80K):GFP), we found that overexpression of Smad2 and Smad3a did enhance the myf5 promoter activity. Furthermore, we proved that Smad3a directly bound at the upstream regulatory region of myf5 using chromatin immunoprecipitation assay. Interestingly, knockdown of either dkk3 or p38a resulted in the decrease of Smad4 protein level, but did not change the Smad3 protein level. Injection of smad4 mRNA enabled embryos to rescue the down-regulation of myf5 in the dkk3-MO-injected embryos. Taken together, we concluded that Dkk3 regulates the phosphorylation of p38a to maintain the stability of Smad4 protein, which, in turn, to allow the complex of Smad2/3a/4 to activate the zebrafish myf5 promoter activity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:48:56Z (GMT). No. of bitstreams: 1 ntu-98-R96b43009-1.pdf: 18068949 bytes, checksum: 138b48f867df8cc60efc955fc2c6fcbc (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要 ------------------------------------------------------ 1
英文摘要 ------------------------------------------------------ 2 文獻回顧 ------------------------------------------------------ 4 前言 ----------------------------------------------------------- 15 實驗材料與方法 -------------------------------------------- 17 結果 ----------------------------------------------------------- 29 討論 ----------------------------------------------------------- 42 總結 ----------------------------------------------------------- 53 參考文獻 ----------------------------------------------------- 54 圖表 ----------------------------------------------------------- 75 附錄 ----------------------------------------------------------- 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | Dkk3 | zh_TW |
| dc.subject | Smad4 | zh_TW |
| dc.subject | 肌肉發育 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | Myf5 | zh_TW |
| dc.subject | Smad4 | en |
| dc.subject | Myf5 | en |
| dc.subject | Dkk3 | en |
| dc.subject | myogenesis | en |
| dc.subject | zebrafish | en |
| dc.title | Dickkopf 3 (Dkk3)藉由調控p38a的磷酸化來維持Smad4蛋白質穩定性進而影響斑馬魚myf5 啟動子開啟 | zh_TW |
| dc.title | Dickkopf 3 (Dkk3) regulates the expression of zebrafish myf5 promoter via phosphorylated p38a-dependent Smad4 stability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂勝春,王育民,蔡振寧 | |
| dc.subject.keyword | 斑馬魚,肌肉發育,Dkk3,Myf5,Smad4, | zh_TW |
| dc.subject.keyword | zebrafish,myogenesis,Dkk3,Myf5,Smad4, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 17.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
