Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23191
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳漢忠(Han-Chung Wu)
dc.contributor.authorKai-Wen Chengen
dc.contributor.author鄭凱文zh_TW
dc.date.accessioned2021-06-08T04:46:37Z-
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citationReferences
Adams, G.P., and Weiner, L.M. (2005). Monoclonal antibody therapy of cancer. Nat Biotechnol 23, 1147-1157.
Arap, M.A., Lahdenranta, J., Mintz, P.J., Hajitou, A., Sarkis, A.S., Arap, W., and Pasqualini, R. (2004). Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6, 275-284.
Chinni, S.R., Falchetto, R., Gercel-Taylor, C., Shabanowitz, J., Hunt, D.F., and Taylor, D.D. (1997). Humoral immune responses to cathepsin D and glucose-regulated protein 78 in ovarian cancer patients. Clin Cancer Res 3, 1557-1564.
Daneshmand, S., Quek, M.L., Lin, E., Lee, C., Cote, R.J., Hawes, D., Cai, J., Groshen, S., Lieskovsky, G., Skinner, D.G., et al. (2007). Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol 38, 1547-1552.
Daugaard, M., Rohde, M., and Jaattela, M. (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581, 3702-3710.
Davenport, E.L., Morgan, G.J., and Davies, F.E. (2008). Untangling the unfolded protein response. Cell Cycle 7, 865-869.
Davidson, D.J., Haskell, C., Majest, S., Kherzai, A., Egan, D.A., Walter, K.A., Schneider, A., Gubbins, E.F., Solomon, L., Chen, Z., et al. (2005). Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65, 4663-4672.
Dong, D., Dubeau, L., Bading, J., Nguyen, K., Luna, M., Yu, H., Gazit-Bornstein, G., Gordon, E.M., Gomer, C., Hall, F.L., et al. (2004). Spontaneous and controllable activation of suicide gene expression driven by the stress-inducible grp78 promoter resulting in eradication of sizable human tumors. Hum Gene Ther 15, 553-561.
Dong, D., Ko, B., Baumeister, P., Swenson, S., Costa, F., Markland, F., Stiles, C., Patterson, J.B., Bates, S.E., and Lee, A.S. (2005). Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment. Cancer Res 65, 5785-5791.
Dong, D., Ni, M., Li, J., Xiong, S., Ye, W., Virrey, J.J., Mao, C., Ye, R., Wang, M., Pen, L., et al. (2008). Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 68, 498-505.
Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3, 391-400.
Fu, Y., and Lee, A.S. (2006). Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol Ther 5, 741-744.
Fu, Y., Li, J., and Lee, A.S. (2007). GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67, 3734-3740.
Fu, Y., Wey, S., Wang, M., Ye, R., Liao, C.P., Roy-Burman, P., and Lee, A.S. (2008). Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc Natl Acad Sci U S A 105, 19444-19449.
Grillo-Lopez, A.J., Hedrick, E., Rashford, M., and Benyunes, M. (2002). Rituximab: ongoing and future clinical development. Semin Oncol 29, 105-112.
Harding, H.P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-274.
Harris, M. (2004). Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 5, 292-302.
Hendershot, L.M. (2004). The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71, 289-297.
Hendershot, L.M., Valentine, V.A., Lee, A.S., Morris, S.W., and Shapiro, D.N. (1994). Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics 20, 281-284.
Hsu, W.M., Hsieh, F.J., Jeng, Y.M., Kuo, M.L., Tsao, P.N., Lee, H., Lin, M.T., Lai, H.S., Chen, C.N., Lai, D.M., et al. (2005). GRP78 expression correlates with histologic differentiation and favorable prognosis in neuroblastic tumors. Int J Cancer 113, 920-927.
Kim, I., Xu, W., and Reed, J.C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7, 1013-1030.
Kim, R., Emi, M., Tanabe, K., and Murakami, S. (2006a). Role of the unfolded protein response in cell death. Apoptosis 11, 5-13.
Kim, Y., Lillo, A.M., Steiniger, S.C., Liu, Y., Ballatore, C., Anichini, A., Mortarini, R., Kaufmann, G.F., Zhou, B., Felding-Habermann, B., et al. (2006b). Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 45, 9434-9444.
Kohler, G., and Milstein, C. (1992). Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. Biotechnology 24, 524-526.
Koomagi, R., Mattern, J., and Volm, M. (1999). Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Res 19, 4333-4336.
Koumenis, C. (2006). ER stress, hypoxia tolerance and tumor progression. Curr Mol Med 6, 55-69.
Lagasse, E. (2008). Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther 15, 136-142.
Lee, A.H., Iwakoshi, N.N., and Glimcher, L.H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23, 7448-7459.
Lee, A.S. (2001). The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26, 504-510.
Lee, A.S. (2005). The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373-381.
Lee, A.S. (2007). GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67, 3496-3499.
Lee, E., Nichols, P., Spicer, D., Groshen, S., Yu, M.C., and Lee, A.S. (2006). GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res 66, 7849-7853.
Lee, T.Y., Wu, H.C., Tseng, Y.L., and Lin, C.T. (2004). A novel peptide specifically binding to nasopharyngeal carcinoma for targeted drug delivery. Cancer Res 64, 8002-8008.
Li, J., and Lee, A.S. (2006). Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 6, 45-54.
Lin, C.T., Chan, W.Y., Chen, W., Huang, H.M., Wu, H.C., Hsu, M.M., Chuang, S.M., and Wang, C.C. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68, 716-727.
Lu, P.D., Harding, H.P., and Ron, D. (2004). Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167, 27-33.
Ma, Y., and Hendershot, L.M. (2004). ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28, 51-65.
Mimeault, M., Hauke, R., and Batra, S.K. (2008). Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther 83, 673-691.
Mintz, P.J., Kim, J., Do, K.A., Wang, X., Zinner, R.G., Cristofanilli, M., Arap, M.A., Hong, W.K., Troncoso, P., Logothetis, C.J., et al. (2003). Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 21, 57-63.
Misra, U.K., Deedwania, R., and Pizzo, S.V. (2006). Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281, 13694-13707.
Misra, U.K., Mowery, Y., Kaczowka, S., and Pizzo, S.V. (2009). Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis. Mol Cancer Ther.
Munro, S., and Pelham, H.R. (1986). An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291-300.
Munro, S., and Pelham, H.R. (1987). A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899-907.
Pantel, K., and Woelfle, U. (2004). Micrometastasis in breast cancer and other solid tumors. J Biol Regul Homeost Agents 18, 120-125.
Park, H.R., Tomida, A., Sato, S., Tsukumo, Y., Yun, J., Yamori, T., Hayakawa, Y., Tsuruo, T., and Shin-ya, K. (2004). Effect on tumor cells of blocking survival response to glucose deprivation. J Natl Cancer Inst 96, 1300-1310.
Pootrakul, L., Datar, R.H., Shi, S.R., Cai, J., Hawes, D., Groshen, S.G., Lee, A.S., and Cote, R.J. (2006). Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin Cancer Res 12, 5987-5993.
Pyrko, P., Schonthal, A.H., Hofman, F.M., Chen, T.C., and Lee, A.S. (2007). The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67, 9809-9816.
Quinones, Q.J., de Ridder, G.G., and Pizzo, S.V. (2008). GRP78: a chaperone with diverse roles beyond the endoplasmic reticulum. Histol Histopathol 23, 1409-1416.
Ranganathan, A.C., Zhang, L., Adam, A.P., and Aguirre-Ghiso, J.A. (2006). Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66, 1702-1711.
Rauschert, N., Brandlein, S., Holzinger, E., Hensel, F., Muller-Hermelink, H.K., and Vollmers, H.P. (2008). A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab Invest 88, 375-386.
Reddy, R.K., Mao, C., Baumeister, P., Austin, R.C., Kaufman, R.J., and Lee, A.S. (2003). Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278, 20915-20924.
Reichert, J.M., and Valge-Archer, V.E. (2007). Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6, 349-356.
Rutkowski, D.T., and Kaufman, R.J. (2004). A trip to the ER: coping with stress. Trends Cell Biol 14, 20-28.
Schrama, D., Reisfeld, R.A., and Becker, J.C. (2006). Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5, 147-159.
Shani, G., Fischer, W.H., Justice, N.J., Kelber, J.A., Vale, W., and Gray, P.C. (2008). GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol 28, 666-677.
Shin, B.K., Wang, H., Yim, A.M., Le Naour, F., Brichory, F., Jang, J.H., Zhao, R., Puravs, E., Tra, J., Michael, C.W., et al. (2003). Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278, 7607-7616.
Shiu, R.P., Pouyssegur, J., and Pastan, I. (1977). Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc Natl Acad Sci U S A 74, 3840-3844.
Shuda, M., Kondoh, N., Imazeki, N., Tanaka, K., Okada, T., Mori, K., Hada, A., Arai, M., Wakatsuki, T., Matsubara, O., et al. (2003). Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38, 605-614.
Strebhardt, K., and Ullrich, A. (2008). Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 8, 473-480.
Su, A.I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K.A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101, 6062-6067.
Szakacs, G., Paterson, J.K., Ludwig, J.A., Booth-Genthe, C., and Gottesman, M.M. (2006). Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5, 219-234.
Tsutsumi, S., Namba, T., Tanaka, K.I., Arai, Y., Ishihara, T., Aburaya, M., Mima, S., Hoshino, T., and Mizushima, T. (2006). Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 25, 1018-1029.
Uramoto, H., Sugio, K., Oyama, T., Nakata, S., Ono, K., Yoshimastu, T., Morita, M., and Yasumoto, K. (2005). Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer 49, 55-62.
Virrey, J.J., Dong, D., Stiles, C., Patterson, J.B., Pen, L., Ni, M., Schonthal, A.H., Chen, T.C., Hofman, F.M., and Lee, A.S. (2008). Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells. Mol Cancer Res 6, 1268-1275.
Wang, Y., Wang, W., Wang, S., Wang, J., Shao, S., and Wang, Q. (2008). Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells. BMC Cancer 8, 372.
Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273, 33741-33749.
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891.
Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20, 6755-6767.
Zhai, L., Kita, K., Wano, C., Wu, Y., Sugaya, S., and Suzuki, N. (2005). Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells. Exp Cell Res 305, 244-252.
Zhang, J., Jiang, Y., Jia, Z., Li, Q., Gong, W., Wang, L., Wei, D., Yao, J., Fang, S., and Xie, K. (2006). Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin Exp Metastasis 23, 401-410.
Zu, K., Bihani, T., Lin, A., Park, Y.M., Mori, K., and Ip, C. (2006). Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25, 546-554.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23191-
dc.description.abstractDrug resistance in cancer poses a profound challenge for the effective treatment of cancer, especially for advanced and metastatic cancers. Therefore, the discovery of a predictive factor for chemoresistance is critical for both screening and improving adjuvant therapies for cancer patients. The glucose-regulated protein GRP78, a major endoplasmic reticulum (ER) chaperone, is inducible under stress conditions that often characterize tumor microenvironments, may protect cancer cells and confer resistance to a variety of chemotherapeutic drugs. Notably, GRP78 can only be found on the cell surface of cancer cells but not normal cells opens up an exciting opportunity of targeting cell surface GRP78 function as well as using it as a cancer-targeted marker. In this study, we have generated twenty monoclonal antibodies (mAbs) specifically against GRP78. Among these mAbs, four mAbs, GRP78-Ab 17-1, GRP78-Ab 18-1, GRP78-Ab 19-5, and GRP78-Ab 20-7 exhibited higher specificity against surface GRP78 of a nasopharyngeal carcinoma (NPC) cell line, NPC-TW04 cells. Using these anti-GRP78 mAbs, we found that GRP78 is also overexpressed in other cancer cell lines, including CL1-5, MDA-MB 231 and HCT116. Interestingly, a small fraction of GRP78 was detected on several cancer cells surface, which includes NPC-TW04, A549, HepG2, H1299 and PAN-1. In addition, results from immunohistochemical staining of human surgical specimens reveled that GRP78 is up-regulated in both liver and oral cancers. To investigate the potential functions of GRP78, lentiviral vector expressing short hairpin RNA (shRNA) was used to suppress GRP78 expression in NPC-TW04. We found that knockdown of GRP78 significantly reduced cell growth, migration, and inhibited xenograft tumor growth. Taken together, our data suggest that GRP78 may serve as a new molecular target of cancer therapy, and the anti-GRP78 mAbs are useful for detection the surface GRP78 of cancer cells and development of ligand-targeted therapeutics for cancer.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:46:37Z (GMT). No. of bitstreams: 1
ntu-98-R96450001-1.pdf: 6376762 bytes, checksum: 2ea92a76dfed5326f8cd7ab2d02cd011 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Contents v
Content of figures vii
Introduction 1
1.1 Epidemiology of cancer 1
1.2 Cancer treatments 2
1.3 Drug resistance 3
1.4 GRP78 protein 4
1.5 Unfolded protein response (UPR) 5
1.6 Roles of GRP78 in cancer progression 7
1.7 Mechanisms of GRP78 in promoting cancer progression 9
1.8 Roles of GRP78 in drug resistance 10
1.9 Cell surface GRP78 as a therapeutic target 11
1.10 Monoclonal antibody therapy 13
Materials and Methods 16
2.1 Cell lines and culture conditions 16
2.2 Construction of plasmid cDNA clones expressing rGRP78 16
2.3 Expression and purification of recombinant GRP78 protein 17
2.4 SDS-PAGE 18
2.5 Immunization of rGRP78 18
2.6 Generation of mAbs against GRP78 19
2.7 Screening of the anti-GRP78 mAbs against GRP78 by ELISA 20
2.8 Screening of the anti-GRP78 mAbs against GRP78 by Western blotting 21
2.9 Identification of the anti-GRP78 mAbs against surface GRP78 by flow cytometric analysis 22
2.10 Determination of monoclonal antibody class and subclass 22
2.11 Apoptosis assay 23
2.12 Immunofluorescent localization of GRP78 in NPC-TW04 24
2.13 Immunohistochemical localization of cancer patient surgical specimens 24
2.14 Transduction with lentiviral vectors expressing shRNA 25
2.15 Cell growth MTT assay 26
2.16 Cell migration assay 27
2.17 Xenograft tumors 27
Results 29
3.1 Generation of monoclonal antibodies against GRP78 29
3.2 Identification of the anti-GRP78 mAbs against NPC-TW04 by ELISA 29
3.3 Identification of the anti-GRP78 mAbs against surface GRP78 of NPC-TW04 by flow cytometric analysis 30
3.4 Determination of the isotype and subclass of the anti-GRP78 mAbs 30
3.5 Apoptotic effects of the anti-GRP78 mAbs on NPC-TW04 31
3.6 Immunolocalization of mAbs targeted GRP78 on NPC-TW04 32
3.7 GRP78 is overexpressed on surface in different cancer cell line 32
3.8 GRP78 is up-regulated in human cancer specimens by immunohistochemical staining 33
3.9 GRP78 knockdown inhibits cell growth in vitro 34
3.10 GRP78 knockdown suppresses cell migration in vitro 35
3.11 GRP78 knockdown inhibits tumor growth in vivo 35
Discussion 37
Figures 43
References 65
dc.language.isoen
dc.title製備GRP78之單株抗體與探討GRP78在腫瘤生成中之功能zh_TW
dc.titleGeneration of Monoclonal Antibodies against GRP78 and Study the Functional Roles of GRP78 in Tumorigenesisen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林國儀,呂仁
dc.subject.keywordGRP78,抗藥性,單株抗體,治療性抗體,標靶治療,zh_TW
dc.subject.keywordGRP78,drug resistance,ligand-targeted therapy,monoclonal antibody,short hairpin RNA,therapeutic antibody.,en
dc.relation.page72
dc.rights.note未授權
dc.date.accepted2009-07-30
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
6.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved