請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23178完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱繼輝 | |
| dc.contributor.author | Tseng-Hsiung Su | en |
| dc.contributor.author | 蘇增雄 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:45:58Z | - |
| dc.date.copyright | 2009-08-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-31 | |
| dc.identifier.citation | References
Aoki, K., Perlman, M., Lim, J.M., Cantu, R., Wells, L. and Tiemeyer, M. (2007) Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J Biol Chem, 282, 9127-9142. Carlson, D.M. (1968) Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem, 243, 616-626. Chou, H.H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., Paabo, S., Satta, Y., Takahata, N. and Varki, A. (2002) Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc Natl Acad Sci U S A, 99, 11736-11741. Ciucanu, I. and Kerek, F. (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res, 131, 209-217. Dell, A., Reason, A.J., Khoo, K.H., Panico, M., Mcdowell, R.A. and Morris, H.R. (1994) Mass-spectrometry of carbohydrate-containing biopolymers. Methods Enzymol, 230, 108-132. Delplace, F., Maes, E., Lemoine, J. and Strecker, G. (2002) Species specificity of O-linked carbohydrate chains of the oviducal mucins in amphibians: structural analysis of neutral oligosaccharide alditols released by reductive beta-elimination from the egg-jelly coats of Rana clamitans. Biochem J, 363, 457-471. Dorland, L., Vanhalbeek, H. and Vliegenthart, J.F.G. (1984) The identification of terminal-alpha (1->3)-linked galactose in N-acetyllactosamine type of glycopeptides by means of 500-Mhz H-1-NMR spectroscopy. Biochem Biophys Res Commun, 122, 859-866. Ermonval, M., Duvet, S., Zonneveld, D., Cacan, R., Buttin, G. and Braakman, I. (2000) Truncated N-glycans affect protein folding in the ER of CHO-derived mutant cell lines without preventing calnexin binding. Glycobiology, 10, 77-87. Gahmberg, C.G. and Hakomori, S.I. (1975) Surface carbohydrates of hamster fibroblasts .1. Chemical characterization of surface-labeled glycosphingolipids and a specific ceramide tetrasaccharide for transformants. J Biol Chem, 250, 2438-2446. Gill, F.B. and Sheldon, F.H. (1991) Phylogeny and classification of Birds - a study in molecular evolution - Sibley,Cg, Ahlquist,Je. Science, 252, 1003-1005. Guerardel, Y., Kol, O., Maes, E., Lefebvre, T., Boilly, B., Davril, M. and Strecker, G. (2000) O-glycan variability of egg-jelly mucins from Xenopus laevis: characterization of four phenotypes that differ by the terminal glycosylation of their mucins. Biochem J, 352, 449-463. Hanisch, F.A. (2001) O-glycosylation of the mucin type. Biol Chem, 382, 143-149. Helenius, A. and Aebi, M. (2001) Intracellular functions of N-linked glycans. Science, 291, 2364-2369. Johnson, J.R., Swanson, J.L. and Neill, M.A. (1992) Avian P1 antigens inhibit agglutination mediated by P-fimbriae of uropathogenic Escherichia coli. Infect Immun, 60, 578-583. Kotani, M., Kawashima, I., Ozawa, H., Ogura, K., Ariga, T. and Tai, T. (1994) Generation of one set of murine monoclonal antibodies specific for globo-series glycolipids: evidence for differential distribution of the glycolipids in rat small intestine. Arch Biochem Biophys, 310, 89-96. Lee, C.L., Hsiao, H.H., Lin, C.W., Wu, S.P., Huang, S.Y., Wu, C.Y., Wang, A.H.J. and Khoo, K.H. (2003) Strategic shotgun proteomics approach for efficient construction of an expression map of targeted protein families in hepatoma cell lines. Proteomics, 3, 2472-2486. Lee, Y.C. (1990) High-performance anion-exchange chromatography for carbohydrate analysis. Anal Biochem, 189, 151-162. Lemoine, J., Strecker, G., Leroy, Y., Fournet, B. and Ricart, G. (1991) Collisional-activation tandem mass spectrometry of sodium adduct ions of methylated oligosaccharides: sequence-analysis and discrimination between alpha-NeuAc-(2->3) and alpha-NeuAc-(2->6) linkages. Carbohydr Res, 221, 209-217. Lin, S.Y., Chen, Y.Y., Fan, Y.Y., Lin, C.W., Chen, S.T., Wang, A.H.J. and Khoo, K.H. (2008) Precise mapping of increased sialylation pattern and the expression of acute phase proteins accompanying murine tumor progression in BALB/c mouse by integrated sera proteomics and glycomics. J Proteome Res, 7, 3293-3303. Macher, B.A. and Galili, U. (2008) The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta, 1780, 75-88. Manzella, S.M., Hooper, L.V. and Baenziger, J.U. (1996) Oligosaccharides containing beta 1,4-linked N-acetylgalactosamine, a paradigm for protein-specific glycosylation. J Biol Chem, 271, 12117-12120. Marth, J.D. and Grewal, P.K. (2008) Mammalian glycosylation in immunity. Nat Rev Immunol, 8, 874-887. Mimura, Y., Church, S., Ghirlando, R., Ashton, P.R., Dong, S., Goodall, M., Lund, J. and Jefferis, R. (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol, 37, 697-706. Ohta, M., Hamako, J., Yamamoto, S., Hatta, H., Kim, M., Yamamoto, T., Oka, S., Mizuochi, T. and Matsuura, F. (1991) Structures of asparagine-linked oligosaccharides from hen egg-yolk antibody (IgY) - Occurrence of unusual glucosylated oligo-mannose type oligosaccharides in a mature glycoprotein. Glycoconj J, 8, 400-413. Parente, J.P., Wieruszeski, J.M., Strecker, G., Montreuil, J., Fournet, B., Vanhalbeek, H., Dorland, L. and Vliegenthart, J.F.G. (1982) A novel type of carbohydrate structure present in hen ovomucoid. J Biol Chem, 257, 3173-3176. Prien, J.M., Huysentruyt, L.C., Ashline, D.J., Lapadula, A.J., Seyfried, T.N. and Reinhold, V.N. (2008) Differentiating N-linked glycan structural isomers in metastatic and nonmetastatic tumor cells using sequential mass spectrometry. Glycobiology, 18, 353-366. Raju, T.S., Briggs, J.B., Borge, S.M. and Jones, A.J.S. (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology, 10, 477-486. Smith, D.F., Larsen, R.D., Mattox, S., Lowe, J.B. and Cummings, R.D. (1990) Transfer and expression of a murine UDP-Gal:beta-D-Gal-alpha 1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells. Competition reactions between the alpha-1,3-galactosyltransferase and the endogenous alpha 2,3-sialyltransferase. J Biol Chem, 265, 6225-6234. Strecker, G., Wieruszeski, J.M., Michalski, J.C., Alonso, C., Leroy, Y., Boilly, B. and Montreuil, J. (1992) Primary structure of neutral and acidic oligosaccharide-alditols derived from the jelly coat of the Mexican axolotl. Occurrence of oligosaccharides with fucosyl(alpha 1-3)fucosyl(alpha 1-4)-3-deoxy-D-glycero-D-galacto-nonulosonic acid and galactosyl(alpha 1-4)[fucosyl(alpha 1-2)]galactosyl(beta 1-4)-N-acetylglucosamine sequences. Eur J Biochem, 207, 995-1002. Suzuki, N., Khoo, K.H., Chen, C.M., Chen, H.C. and Lee, Y.C. (2003) N-glycan structures of pigeon IgG: a major serum glycoprotein containing Galalpha1-4Gal termini. J Biol Chem, 278, 46293-46306. Suzuki, N., Khoo, K.H., Chen, H.C., Johnson, J.R. and Lee, Y.C. (2001) Isolation and characterization of major glycoproteins of pigeon egg white: ubiquitous presence of unique N-glycans containing Galalpha1-4Gal. J Biol Chem, 276, 23221-23229. Suzuki, N., Laskowski, M. and Lee, Y.C. (2004) Phylogenetic expression of Galalpha1-4Gal on avian glycoproteins: glycan differentiation inscribed in the early history of modern birds. Proc Natl Acad Sci U S A, 101, 9023-9028. Suzuki, N. and Lee, Y.C. (2004) Site-specific N-glycosylation of chicken serum IgG. Glycobiology, 14, 275-292. Takahashi, N., Khoo, K.H., Suzuki, N., Johnson, J.R. and Lee, Y.C. (2001) N-glycan structures from the major glycoproteins of pigeon egg white: predominance of terminal Galalpha(1-4)Gal. J Biol Chem, 276, 23230-23239. Vanhetschip, F.D., Samallo, J., Broos, J., Ophuis, J., Mojet, M., Gruber, M. and Ab, G. (1987) Nucleotide sequence of a chicken vitellogenin gene and derived amino acid sequence of the encoded yolk precursor protein. J Mol Biol, 196, 245-260. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology, 3, 97-130. Varki, A. (2001) Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol, Suppl 33, 54-69. Wieruszeski, J.M., Michalski, J.C., Montreuil, J., Strecker, G., Peterkatalinic, J., Egge, H., Vanhalbeek, H., Mutsaers, J.H.G.M. and Vliegenthart, J.F.G. (1987) Structure of the monosialyl oligosaccharides derived from salivary-gland mucin glycoproteins of the Chinese swiftlet (genus Collocalia). Characterization of novel types of extended core structure, Gal beta(1->3)[GlcNAc beta(1->6)] GalNAc alpha(1->3)GalNAc(-ol), and of chain termination, [Gal alpha(1->4)]0-1[Gal beta(1->4)]2GlcNAc beta(1->.). J Biol Chem, 262, 6650-6657. Yang, Z.T., Bergstrom, J. and Karlsson, K.A. (1994) Glycoproteins with Gal alpha 4Gal are absent from human erythrocyte membranes, indicating that glycolipids are the sole carriers of blood group P activities. J Biol Chem, 269, 14620-14624. Yu, S.Y., Khoo, K.H., Yang, Z.G., Herp, A. and Wu, A.M. (2008) Glycomic mapping of O- and N-linked glycans from major rat sublingual mucin. Glycoconj J, 25, 199-212. Yu, S.Y., Wu, S.W. and Khoo, K.H. (2006) Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing of permethylated complex type N-glycans. Glycoconj J, 23, 355-369. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23178 | - |
| dc.description.abstract | 中文摘要
根據西方墨點法(western blotting)和凝集素法(lectin blotting)的研究顯示:大部分在分類學上被歸類為Neoaves的現代禽類都能表現Galα1-4Gal這個末端醣抗原,而那些被歸類為Ratitae或是Galloanserae的禽類,則沒有辦法表現此特定醣結構。然而這些帶有Galα1-4Gal末端醣抗原結構的完整醣質結構,目前有被定出完整序列的僅有那些源自鴿子的蛋白及其血清IgG的醣質。本論文計畫主要在研發並應用各式串聯式質譜儀,針對現有超過一千多種禽類蛋白的珍貴庫藏樣品,開始系統性的分析禽類蛋白醣質體,以期更精準的鑑定Galα1-4Gal在禽類各網目的分佈,並藉以偵測是否有其它新穎醣抗原結構的存在,探討醣生物學與禽分類學上的相關聯性。此外,本計畫特著重於建立末端醣抗原修飾如Gal-Gal與NeuAc-Gal等的鍵結位置的質譜分析法,尤其是有鑒於後者與禽流感病毒的感染性有密切關係。現階段已完成近23隻大多在分類學來自不同「目」的禽類蛋白醣質體的分析,其流程是先以酵素或化學的方式將來自於禽類的蛋白或IgG上的醣切下,予以泛甲基化,經由質譜分析初步得到各自的醣質體表現圖譜,再以串聯式質譜儀高、低能量撞擊斷裂模式定序特定醣質結構,或再搭配離子井式多重斷裂模式分析(MSn),鑑定末端結構如Galα1-4Gal,NeuAc,及硫酸化(sulfation)的鍵結位置。在一些特定例子中,進一步藉由離子井的快速掃瞄效率與敏感度,在MS2的層級取得醣質體圖譜,藉由特定斷片離子篩出帶有特定醣抗原結構如Galα1-4Gal的醣類分子。另外亦嘗試經由膠體電泳分離禽類的醣蛋白,再以酵素就各別呈現的醣蛋白取得其修飾的醣質,進一步探討此禽類的醣質分佈是否具有蛋白專一性的表現,亦可藉此再視需求鑑定出該蛋白身份。 綜合上述的實驗流程與方法,目前在禽類醣質體學上已得到的具體成果包含:鑑定多種複雜的 hybrid type和complex type的N-linked醣的廣泛存在、確認Galα1-4Gal的表現與禽類的網目分類有關聯、發現Gal-Gal的末端醣抗原除了可存在於N-linked醣外,亦存在於少數禽類的O-linked醣;並額外發現了一些新型的末端醣抗原結構,如Galβ1-4Gal,diLacNAc,LacdiNAc與硫酸化修飾。簡言之,禽類蛋白中N-linked醣的歧異度主要是源自不完全的α-/β-galactosylation、有無bisecting GlcNAc、唾液酸化與硫酸化。硫酸化修飾存在於大部分的禽類蛋白上的N-linked醣,其中硫酸化的位置可以是在LacNAc末端的Gal,或是Gal-Gal-GlcNAc中的GlcNAc的第六號碳上。在唾液酸的鍵結方面,發現大部分源自於海鷗蛋白上N-linked醣之唾液酸是屬於α2,3鍵結的,而源自於海鷗、turkey、guineafowl和peafowl IgG上N-linked醣之唾液酸則大多是屬於α2,6鍵結。最後,從醣質體分析延伸,搭配膠體電泳的使用,得以快速鑑定特定醣質結構之分佈於個別蛋白上並鑑定其身份。結果顯示有些禽類的個別蛋白會帶有顯著不同的醣化修飾,某些種類卻不然,因此對其蛋白生合成醣化的調控機制與結果仍有待進一步的探討。 | zh_TW |
| dc.description.abstract | Abstract
Phylogenetic expression of Galα1-4Gal glycotope among the avians has recently been systematically investigated by lectin and western blotting. In short, it was shown that only the egg white glycoproteins of avian species belonging to Neoaves but not those of Ratitae and Galloanserae would express this glycotope. However, the precise structures of its glycan carriers have thus far been established only for the pigeon egg white and IgG. Making use of a precious collection of egg white samples from over 1,000 species in hand, a systematic avian egg white glycomic analysis by mass spectrometry was initiated, aiming to map more extensively the phylogenic expression of Galα1-4Gal, along with any other novel epitopes, as well as to define the linkages of terminal sialylation in relation to influenza virus infection. To this end, egg white samples from over 20 avian species representing major taxonomical divisions were processed to release both N- and O-glycans and profiled by MALDI-MS after permethylation. Tentative assignment of the avian glycomic constituents was supported by MS/MS sequencing based on complementary low and high energy collision induced dissociation, as well as multistage activation MSn to define the linkage of sulfation, terminal galactosylation and sialylation. Additional glycomic mapping at the MS2 level by the total ion mapping functionality on a linear ion trap was developed and applied to define the entire sub-glycome on which the Gal-Gal glycotope is carried. Moreover, gel based glycomic analysis of individual protein bands enables a quick assessment of the distribution of individual glycans among distinct egg white glycoproteins. Collectively, applications of the developed experimental glycomic workflow successfully confirmed that Galα1-4Gal is phylogenetically distributed among the avian egg whites. A wide diversity of hybrid and complex type N-glycan structures were structurally defined, along with the identification of terminal Galβ1-4Gal, diLacNAc, LacdiNAc and sulfation. In short, the avian egg white N-glycomic heterogeneity was shown to be mostly due to incomplete α-/β-galactosylation, with or without bisecting GlcNAc, sialylation, and sulfation. In addition, Gal-Gal capping was found to occur not only on the egg white N-glycans but also on O-glycans, albeit much more restrictedly. Sulfation on the avian egg white N-glycans was widely detected and shown to be 6-linked to the terminal Gal residue of a LacNAc antenna, or the GlcNAc residue of the Gal-Gal-GlcNAc sequence. NeuAc-sialylation on gull egg white glycoproteins was shown to be predominantly in α2,3 linkage, whereas those on gull, turkey, guineafowl, and peafowl IgG samples prevailed in α2,6 form. Finally, gel-based analysis of a selected few egg white samples demonstrated that a significant difference in glycosylation profiles may exist among individual glycoprotein carriers for at least one avian species, but can be rather similar for others. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:45:58Z (GMT). No. of bitstreams: 1 ntu-98-R96b46009-1.pdf: 3561275 bytes, checksum: da02f57e2c57aeca033b5b2bc3a0b25e (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
中文摘要 3 Abstract 3 Chapter 1 Introduction and Specific Aims 5 1.1 The Structural Architecture of Glycans 5 1.2 Avian Glycomics and Its Relationship to Phylogeny 7 1.3 An Overview of Current Methodologies for Glycomic Analysis 9 1.4 Mass Spectrometry-based Glycomics 11 1.4.1 Modern mass spectrometry 11 1.4.2 Fragmentation characteristic of glycans 12 1.5 Specific Aims 14 Chapter 2 Materials and Methods 17 2.1 Sources of Avian Samples 17 2.2 In-solution Release of Glycans from Avian Egg White Glycoproteins 17 2.2.1 N-glycan release 17 2.2.2 O-glycan release 18 2.3 Gel-based N-glycan Release and Tryptic Digestion of Avian Egg White Proteins 18 2.4 Application of Exo-glycosidase Digestions 19 2.5 Permethylation of Oligosaccharides and the Following Clean-up 19 2.6 Enrichment of Sulfated N-glycans 20 2.7 Mass Spectrometry Analysis 20 2.7.1 MALDI-Q/TOF instrument 21 2.7.2 MALDI-TOF/TOF instrument 21 2.7.3 LC-ESI-LTQ-Orbitrap XL instrument 21 2.7.4 API-Q/TOF instrument 22 Chapter 3 Egg White and IgG N-glycans of Gull 24 3.1 Structural Analysis of N-glycans from Gull Egg White Glycoproteins 24 3.1.1 Analyses of neutral PA-glycans from GEW, GOM and GOT 24 3.1.2 Characterization of Galα1-4Gal and diLacNAc glycotopes 25 3.1.3 Characterization of GEW mono-sialylated, di-sialylated PA-glycans 25 3.2 Structural Analysis of N-glycans from Gull Egg Yolk IgG 26 3.3 Comparison of Egg White Glycomes between Pigeon and Gull 27 Chapter 4 IgG N-glycans of Galliformes 35 4.1 Structural Analyses of Yolk IgG N-glycans from TKY, GUI and IPF 35 4.1.1 Characterization of Galβ1-4Gal glycotope 35 4.1.2 Characterization of sialic acid linkage 36 Chapter 5 Mapping the Characteristics of Avian Egg White Glycomes 40 5.1 Phylogenetic Expression of Galα1-4Gal Glycotopes 40 5.1.1 MALDI-MS mapping of the avian egg white N-glycomes 40 5.1.2 Distribution of Galα/β-Gal-GlcNAc among the avian egg white N-glycomes 53 5.1.3 Distribution of Galα/β-Gal among the avian egg white O-glycomes 56 5.2 Avian Egg White Sulfoglycomics 59 5.3 In-gel Release of N-glycans and Protein Identification 68 Chapter 6 Discussion 77 6.1 From Avian Glycomes to Avian Glycomics via Mass Spectrometry 77 6.2 The Expression of Galα1-4Gal and Its Relationship with Avian Taxonomy 78 6.3 The Expression of Galβ1-4Gal 79 6.4 The Glycotope Diversity of Avian Egg White Glycomes 80 6.5 Gel-based Glycomics and Proteomics 81 Chapter 7 References 83 Appendixes 88 List of Figures and Tables 88 Abbreviation 90 Symbols Used in Figures for Graphical Representation of Glycosyl Residues. 91 | |
| dc.language.iso | en | |
| dc.subject | 質譜 | zh_TW |
| dc.subject | 醣質體學 | zh_TW |
| dc.subject | 醣抗原結構 | zh_TW |
| dc.subject | 禽類 | zh_TW |
| dc.subject | mass spectrometry | en |
| dc.subject | glycomics | en |
| dc.subject | glycotope | en |
| dc.subject | avian | en |
| dc.title | 禽類醣質體特定結構之系統性質譜分析 | zh_TW |
| dc.title | Mass Spectrometry-based Avian Glycomics: Phylogenic Expression of Specific Terminal Glycotopes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳鈴津,洪上程 | |
| dc.subject.keyword | 質譜,禽類,醣抗原結構,醣質體學, | zh_TW |
| dc.subject.keyword | mass spectrometry,avian,glycotope,glycomics, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
