請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23171完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張震東(Geen-Dong Chang) | |
| dc.contributor.author | Ting-Ching Chen | en |
| dc.contributor.author | 陳亭靜 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:45:35Z | - |
| dc.date.copyright | 2009-08-11 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-31 | |
| dc.identifier.citation | 1. Kitchin, K. T. (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites, Toxicol Appl Pharmacol 172, 249-261.
2. Styblo, M., Delnomdedieu, M., and Thomas, D. J. (1996) Mono- and dimethylation of arsenic in rat liver cytosol in vitro, Chem Biol Interact 99, 147-164. 3. Kosnett, M. J., Becker, C. E., Osterloh, J. D., Kelly, T. J., and Pasta, D. J. (1994) Factors influencing bone lead concentration in a suburban community assessed by noninvasive K x-ray fluorescence, JAMA 271, 197-203. 4. Nelson, K. W. (1977) Industrial contributions of arsenic to the environment, Environ Health Perspect 19, 31-34. 5. Germolec, D. R., Spalding, J., Yu, H. S., Chen, G. S., Simeonova, P. P., Humble, M. C., Bruccoleri, A., Boorman, G. A., Foley, J. F., Yoshida, T., and Luster, M. I. (1998) Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors, Am J Pathol 153, 1775-1785. 6. Forkner, S. T. (1931) Arsenic as a therapeutic agent in chronic myelogenous leukemia, JAMA, 3-5. 7. Lehmann, S., Bengtzen, S., Paul, A., Christensson, B., and Paul, C. (2001) Effects of arsenic trioxide (As2O3) on leukemic cells from patients with non-M3 acute myelogenous leukemia: studies of cytotoxicity, apoptosis and the pattern of resistance, Eur J Haematol 66, 357-364. 8. Wang, T. S., Shu, Y. F., Liu, Y. C., Jan, K. Y., and Huang, H. (1997) Glutathione peroxidase and catalase modulate the genotoxicity of arsenite, Toxicology 121, 229-237. 9. Bau, D. T., Wang, T. S., Chung, C. H., Wang, A. S., and Jan, K. Y. (2002) Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite, Environ Health Perspect 110 Suppl 5, 753-756. 10. Fong, K., Lee, F., and Bockrath, R. (1980) Effects of sodium arsenite on single-strand DNA break formation and post-replication repair in E. coli following UV irradiation, Mutat Res 70, 151-156. 11. Hamadeh, H. K., Trouba, K. J., Amin, R. P., Afshari, C. A., and Germolec, D. (2002) Coordination of altered DNA repair and damage pathways in arsenite-exposed keratinocytes, Toxicol Sci 69, 306-316. 12. Li, J. H., and Rossman, T. G. (1989) Inhibition of DNA ligase activity by arsenite: a possible mechanism of its comutagenesis, Mol Toxicol 2, 1-9. 13. Lee-Chen, S. F., Yu, C. T., and Jan, K. Y. (1992) Effect of arsenite on the DNA repair of UV-irradiated Chinese hamster ovary cells, Mutagenesis 7, 51-55. 14. Shi, H., Hudson, L. G., Ding, W., Wang, S., Cooper, K. L., Liu, S., Chen, Y., Shi, X., and Liu, K. J. (2004) Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals, Chem Res Toxicol 17, 871-878. 15. Liu, Y., Guyton, K. Z., Gorospe, M., Xu, Q., Lee, J. C., and Holbrook, N. J. (1996) Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite, Free Radic Biol Med 21, 771-781. 16. Jendrach, M., Mai, S., Pohl, S., Voth, M., and Bereiter-Hahn, J. (2008) Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress, Mitochondrion 8, 293-304. 17. Ono, T., Isobe, K., Nakada, K., and Hayashi, J. I. (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria, Nat Genet 28, 272-275. 18. Kinnally, K. W., Zorov, D., Antonenko, Y., and Perini, S. (1991) Calcium modulation of mitochondrial inner membrane channel activity, Biochem Biophys Res Commun 176, 1183-1188. 19. Ehlers, R. A., Hernandez, A., Bloemendal, L. S., Ethridge, R. T., Farrow, B., and Evers, B. M. (1999) Mitochondrial DNA damage and altered membrane potential (delta psi) in pancreatic acinar cells induced by reactive oxygen species, Surgery 126, 148-155. 20. Skulachev, V. P. (1999) Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms, Mol Aspects Med 20, 139-184. 21. Wang, T. S., Kuo, C. F., Jan, K. Y., and Huang, H. (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species, J Cell Physiol 169, 256-268. 22. Rein, K. A., Borrebaek, B., and Bremer, J. (1979) Arsenite inhibits beta-oxidation in isolated rat liver mitochondria, Biochim Biophys Acta 574, 487-494. 23. Yih, L. H., Huang, H. M., Jan, K. Y., and Lee, T. C. (1991) Sodium arsenite induces ATP depletion and mitochondrial damage in HeLa cells, Cell Biol Int Rep 15, 253-264. 24. Li, W., and Chou, I. N. (1992) Effects of sodium arsenite on the cytoskeleton and cellular glutathione levels in cultured cells, Toxicol Appl Pharmacol 114, 132-139. 25. Huang, S. C., and Lee, T. C. (1998) Arsenite inhibits mitotic division and perturbs spindle dynamics in HeLa S3 cells, Carcinogenesis 19, 889-896. 26. Brown, I. R., and Rush, S. J. (1984) Induction of a 'stress' protein in intact mammalian organs after the intravenous administration of sodium arsenite, Biochem Biophys Res Commun 120, 150-155. 27. Caltabiano, M. M., Koestler, T. P., Poste, G., and Greig, R. G. (1986) Induction of 32- and 34-kDa stress proteins by sodium arsenite, heavy metals, and thiol-reactive agents, J Biol Chem 261, 13381-13386. 28. Keyse, S. M., and Tyrrell, R. M. (1989) Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite, Proc Natl Acad Sci U S A 86, 99-103. 29. Taketani, S., Kohno, H., Yoshinaga, T., and Tokunaga, R. (1989) The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase, FEBS Lett 245, 173-176. 30. Kato, K., Goto, S., Hasegawa, K., and Inaguma, Y. (1993) Coinduction of two low-molecular-weight stress proteins, alpha B crystallin and HSP28, by heat or arsenite stress in human glioma cells, J Biochem 114, 640-647. 31. Madden, E. F., Akkerman, M., and Fowler, B. A. (2002) A comparison of 60, 70, and 90 kDa stress protein expression in normal rat NRK-52 and human HK-2 kidney cell lines following in vitro exposure to arsenite and cadmium alone or in combination, J Biochem Mol Toxicol 16, 24-32. 32. Kedersha, N. L., Gupta, M., Li, W., Miller, I., and Anderson, P. (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules, J Cell Biol 147, 1431-1442. 33. Nover, L., Scharf, K. D., and Neumann, D. (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves, Mol Cell Biol 3, 1648-1655. 34. Nover, L., Scharf, K. D., and Neumann, D. (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs, Mol Cell Biol 9, 1298-1308. 35. Williams, B. R. (2001) Signal integration via PKR, Sci STKE 2001, RE2. 36. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response, Mol Cell 5, 897-904. 37. Kimball, S. R. (2001) Regulation of translation initiation by amino acids in eukaryotic cells, Prog Mol Subcell Biol 26, 155-184. 38. Han, A. P., Yu, C., Lu, L., Fujiwara, Y., Browne, C., Chin, G., Fleming, M., Leboulch, P., Orkin, S. H., and Chen, J. J. (2001) Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency, EMBO J 20, 6909-6918. 39. Anderson, P., and Kedersha, N. (2002) Stressful initiations, J Cell Sci 115, 3227-3234. 40. Li, W., Li, Y., Kedersha, N., Anderson, P., Emara, M., Swiderek, K. M., Moreno, G. T., and Brinton, M. A. (2002) Cell proteins TIA-1 and TIAR interact with the 3' stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication, J Virol 76, 11989-12000. 41. Kedersha, N., Cho, M. R., Li, W., Yacono, P. W., Chen, S., Gilks, N., Golan, D. E., and Anderson, P. (2000) Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules, J Cell Biol 151, 1257-1268. 42. Anderson, P., and Kedersha, N. (2008) Stress granules: the Tao of RNA triage, Trends Biochem Sci 33, 141-150. 43. Mazroui, R., Huot, M. E., Tremblay, S., Filion, C., Labelle, Y., and Khandjian, E. W. (2002) Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression, Hum Mol Genet 11, 3007-3017. 44. Linder, B., Plottner, O., Kroiss, M., Hartmann, E., Laggerbauer, B., Meister, G., Keidel, E., and Fischer, U. (2008) Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP, Hum Mol Genet 17, 3236-3246. 45. Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M. J., Scheuner, D., Kaufman, R. J., Golan, D. E., and Anderson, P. (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling, J Cell Biol 169, 871-884. 46. Leung, A. K., Calabrese, J. M., and Sharp, P. A. (2006) Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules, Proc Natl Acad Sci U S A 103, 18125-18130. 47. Wilczynska, A., Aigueperse, C., Kress, M., Dautry, F., and Weil, D. (2005) The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules, J Cell Sci 118, 981-992. 48. Vessey, J. P., Vaccani, A., Xie, Y., Dahm, R., Karra, D., Kiebler, M. A., and Macchi, P. (2006) Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules, J Neurosci 26, 6496-6508. 49. Baez, M. V., and Boccaccio, G. L. (2005) Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules, J Biol Chem 280, 43131-43140. 50. Nonhoff, U., Ralser, M., Welzel, F., Piccini, I., Balzereit, D., Yaspo, M. L., Lehrach, H., and Krobitsch, S. (2007) Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules, Mol Biol Cell 18, 1385-1396. 51. Yang, W. H., Yu, J. H., Gulick, T., Bloch, K. D., and Bloch, D. B. (2006) RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules, RNA 12, 547-554. 52. Stoecklin, G., Stubbs, T., Kedersha, N., Wax, S., Rigby, W. F., Blackwell, T. K., and Anderson, P. (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay, EMBO J 23, 1313-1324. 53. Yang, F., Peng, Y., Murray, E. L., Otsuka, Y., Kedersha, N., and Schoenberg, D. R. (2006) Polysome-bound endonuclease PMR1 is targeted to stress granules via stress-specific binding to TIA-1, Mol Cell Biol 26, 8803-8813. 54. Stohr, N., Lederer, M., Reinke, C., Meyer, S., Hatzfeld, M., Singer, R. H., and Huttelmaier, S. (2006) ZBP1 regulates mRNA stability during cellular stress, J Cell Biol 175, 527-534. 55. Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J. M., Bertrand, E., and Tazi, J. (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules, J Cell Biol 160, 823-831. 56. Solomon, S., Xu, Y., Wang, B., David, M. D., Schubert, P., Kennedy, D., and Schrader, J. W. (2007) Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs, Mol Cell Biol 27, 2324-2342. 57. Hua, Y., and Zhou, J. (2004) Survival motor neuron protein facilitates assembly of stress granules, FEBS Lett 572, 69-74. 58. Goodier, J. L., Zhang, L., Vetter, M. R., and Kazazian, H. H., Jr. (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex, Mol Cell Biol 27, 6469-6483. 59. Brehm, M. A., Schenk, T. M., Zhou, X., Fanick, W., Lin, H., Windhorst, S., Nalaskowski, M. M., Kobras, M., Shears, S. B., and Mayr, G. W. (2007) Intracellular localization of human Ins(1,3,4,5,6)P5 2-kinase, Biochem J 408, 335-345. 60. Yu, C., York, B., Wang, S., Feng, Q., Xu, J., and O'Malley, B. W. (2007) An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response, Mol Cell 25, 765-778. 61. Li, W., Simarro, M., Kedersha, N., and Anderson, P. (2004) FAST is a survival protein that senses mitochondrial stress and modulates TIA-1-regulated changes in protein expression, Mol Cell Biol 24, 10718-10732. 62. Rothe, F., Gueydan, C., Bellefroid, E., Huez, G., and Kruys, V. (2006) Identification of FUSE-binding proteins as interacting partners of TIA proteins, Biochem Biophys Res Commun 343, 57-68. 63. Kwon, S., Zhang, Y., and Matthias, P. (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response, Genes Dev 21, 3381-3394. 64. Hofmann, I., Casella, M., Schnolzer, M., Schlechter, T., Spring, H., and Franke, W. W. (2006) Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules, Mol Biol Cell 17, 1388-1398. 65. Ogawa, F., Kasai, M., and Akiyama, T. (2005) A functional link between Disrupted-In-Schizophrenia 1 and the eukaryotic translation initiation factor 3, Biochem Biophys Res Commun 338, 771-776. 66. Kim, W. J., Back, S. H., Kim, V., Ryu, I., and Jang, S. K. (2005) Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions, Mol Cell Biol 25, 2450-2462. 67. Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H., and Takekawa, M. (2008) Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways, Nat Cell Biol 10, 1324-1332. 68. Lorand, L., and Graham, R. M. (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions, Nat Rev Mol Cell Biol 4, 140-156. 69. Esposito, C., and Caputo, I. (2005) Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance, FEBS J 272, 615-631. 70. Smethurst, P. A., and Griffin, M. (1996) Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by Ca2+ and nucleotides, Biochem J 313 ( Pt 3), 803-808. 71. Hwang, K. C., Gray, C. D., Sivasubramanian, N., and Im, M. J. (1995) Interaction site of GTP binding Gh (transglutaminase II) with phospholipase C, J Biol Chem 270, 27058-27062. 72. Mian, S., el Alaoui, S., Lawry, J., Gentile, V., Davies, P. J., and Griffin, M. (1995) The importance of the GTP-binding protein tissue transglutaminase in the regulation of cell cycle progression, FEBS Lett 370, 27-31. 73. Fesus, L., Thomazy, V., and Falus, A. (1987) Induction and activation of tissue transglutaminase during programmed cell death, FEBS Lett 224, 104-108. 74. Lorand, L., Doolittle, R. F., Konishi, K., and Riggs, S. K. (1963) A New Class of Blood Coagulation Inhibitors, Arch Biochem Biophys 102, 171-179. 75. Williams-Ashman, H. G., Notides, A. C., Pabalan, S. S., and Lorand, L. (1972) Transamidase reactions involved in the enzymic coagulation of semen: isolation of -glutamyl- -lysine dipeptide from clotted secretion protein of guinea pig seminal vesicle, Proc Natl Acad Sci U S A 69, 2322-2325. 76. Shin, D. M., Jeon, J. H., Kim, C. W., Cho, S. Y., Kwon, J. C., Lee, H. J., Choi, K. H., Park, S. C., and Kim, I. G. (2004) Cell type-specific activation of intracellular transglutaminase 2 by oxidative stress or ultraviolet irradiation: implications of transglutaminase 2 in age-related cataractogenesis, J Biol Chem 279, 15032-15039. 77. Jeong, E. M., Kim, C. W., Cho, S. Y., Jang, G. Y., Shin, D. M., Jeon, J. H., and Kim, I. G. (2009) Degradation of transglutaminase 2 by calcium-mediated ubiquitination responding to high oxidative stress, FEBS Lett 583, 648-654. 78. Kayali, F., Montie, H. L., Rafols, J. A., and DeGracia, D. J. (2005) Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules, Neuroscience 134, 1223-1245. 79. Schagger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal Biochem 166, 368-379. 80. Kedersha, N., and Anderson, P. (2007) Mammalian stress granules and processing bodies, Methods Enzymol 431, 61-81. 81. Black, S. (1983) A novel thiol-dependent arsenite-sensitive valyl-tRNA synthetase activity from yeast, J Biol Chem 258, 2112-2114. 82. Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Y., Saprunova, V. B., Skulachev, I. V., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol Cell Biochem 256-257, 341-358. 83. Lyamzaev, K. G., Nepryakhina, O. K., Saprunova, V. B., Bakeeva, L. E., Pletjushkina, O. Y., Chernyak, B. V., and Skulachev, V. P. (2008) Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell, Biochim Biophys Acta 1777, 817-825. 84. Trevor, K. T., McGuire, J. G., and Leonova, E. V. (1995) Association of vimentin intermediate filaments with the centrosome, J Cell Sci 108 ( Pt 1), 343-356. 85. Riley, N. E., Bardag-Gorce, F., Montgomery, R. O., Li, J., Lungo, W., Lue, Y. H., and French, S. W. (2003) Microtubules are required for cytokeratin aggresome (Mallory body) formation in hepatocytes: an in vitro study, Exp Mol Pathol 74, 173-179. 86. Li, J. X., Shen, Y. Q., Cai, B. Z., Zhao, J., Bai, X., Lu, Y. J., and Li, X. Q. (2009) Arsenic trioxide induces the apoptosis in vascular smooth muscle cells via increasing intracellular calcium and ROS formation, Mol Biol Rep. 87. Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim Biophys Acta 1757, 518-524. 88. Bernassola, F., Federici, M., Corazzari, M., Terrinoni, A., Hribal, M. L., De Laurenzi, V., Ranalli, M., Massa, O., Sesti, G., McLean, W. H., Citro, G., Barbetti, F., and Melino, G. (2002) Role of transglutaminase 2 in glucose tolerance: knockout mice studies and a putative mutation in a MODY patient, FASEB J 16, 1371-1378. 89. Battaglia, G., Farrace, M. G., Mastroberardino, P. G., Viti, I., Fimia, G. M., Van Beeumen, J., Devreese, B., Melino, G., Molinaro, G., Busceti, C. L., Biagioni, F., Nicoletti, F., and Piacentini, M. (2007) Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders, J Neurochem 100, 36-49. 90. Rodolfo, C., Mormone, E., Matarrese, P., Ciccosanti, F., Farrace, M. G., Garofano, E., Piredda, L., Fimia, G. M., Malorni, W., and Piacentini, M. (2004) Tissue transglutaminase is a multifunctional BH3-only protein, J Biol Chem 279, 54783-54792. 91. Hasegawa, G., Suwa, M., Ichikawa, Y., Ohtsuka, T., Kumagai, S., Kikuchi, M., Sato, Y., and Saito, Y. (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase, Biochem J 373, 793-803. 張寧琄 (2007) 小鼠睪丸內Transglutaminase受質的純化與鑑定, 國立台灣大學生化科學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23171 | - |
| dc.description.abstract | 三氧化二砷是一種環境中的致癌物,可能造成人體許多疾病,然而,它也是臨床上的抗癌藥,可應用在治療急性骨髓白血病;在細胞中,它會去引起細胞內的毒性,產生活性氧自由基去攻擊核酸,蛋白質,脂質,以及粒線體,進而造成細胞凋亡,同時也會產生內質網壓力以及促使壓力顆粒的形成。經由先前實驗室成員利用蛋白質體鑑定Transglutaminase II (TG 2)的受質發現,TG2的受質中含有許多已知壓力顆粒的蛋白,因此本論文擬探討,TG2是否在壓力顆粒中扮演催化壓力顆粒形成的角色。因此我們藉由三氧化二砷來研究壓力顆粒與TG2之間的關係。利用免疫螢光染色觀察到TG2的部分受質會出現在壓力顆粒的組成中,包含有APG-1,Tom34和PDIA4,這些分子都是新發現的壓力顆粒組成成分,也由此結果推測TG2在壓力顆粒上可能是扮演協助壓力顆粒組成的角色。然而,卻從in vivo和in vitro transamidation反應發現三氧化二砷會攻擊TG2酵素上的thiol group (SH),使TG2催化活性喪失,這說明了在三氧化二砷處理下細胞內TG2催化活性受到抑制,也排除掉TG2催化壓力顆粒形成的可能性。另外,在研究中利用免疫螢光染色發現了處理三氧化二砷的Cos-1細胞中,TG2會跑到粒線體結構中,並且圍繞在細胞核和MTOC周邊,同時也會讓MFN-1和MFN-2的表現量上升,推測此現象為粒線體融合反應。由細胞流式儀發現這樣的粒線體融合反應會伴隨著活性氧自由基的生成和粒線體膜電位的下降,也會讓細胞色素C由粒線體做釋放,進而造成細胞走向細胞凋亡,這樣的現象提供了新的研究方法去研究粒線體融合反應與細胞凋亡之間的關聯性。而使用共同免疫沉澱法發現三氧化二砷的處理會使TG2與Grp78之間的結合力增加,這個現象,除了說明Grp78與TG2之間有結合作用外,還代表著在氧化壓力下,Grp78可能會成為TG2的chaperone。以上這些現象都是相當有趣的,但目前我們還無法確定TG2在粒線體融合反應上所扮演的角色。 | zh_TW |
| dc.description.abstract | Arsenic trioxide is an environmental carcinogen which causes diseases in humans. However, it has often been used as an effective treatment for acute promyelocytic leukemia and has the potential to provide a cure for solid malignant tumors. Arsenic trioxide induces cellular toxicity by increasing the level of reactive oxygen species which target DNA, proteins, lipids and mitochondria, resulting in apoptosis. Arsenic trioxide has also been shown to induce ER stress and the formation of stress granules. Using the proteomic approach, we have previously identified the substrates of transglutaminase II (TG2) which include many known components of stress granules. To determine whether TG2 could catalyze the formation of stress granules, we used arsenic trioxide for inducing cellular stress to search for the functional relationships between stress granules and TG2. Using immunofluorescence staining, we found that some substrates of TG2 are localized in stress granules. These include APG-1, Tom34 and PDIA4, all of which are novel components of stress granules. We therefore propose that TG2 could assist the formation of stress granules. However, in vivo and in vitro transamidation experiments showed that arsenic trioxide decreased the catalytic activity of TG2 by reacting with its thiol group, ruling out the possibility of the catalytic role of TG2 in the formation of stress granules. The results suggest that the decreased activity of TG2 could explain for the therapeutic mechanisms of arsenic trioxide in treating PML. Additionally, when Cos-1 cells were treated with arsenic trioxide, TG2 seemed to co-localize with the structure of mitochondria, surrounding the nucleus and the microtubule-organizing center (MTOC). We also detected an increase in the expression of Mitofusin-1 and Mitofusin-2, suggesting the formation of mitochondrial fusion. This phenomenon coincides with increased reactive oxygen species, decreased mitochondrial membrane potential. Furthermore, we also detected apoptosis through the mitochondrial release of cytochrome c. The results provide a new strategy to study the relationship between apoptosis and mitochondrial fusion. Co-immunoprecipitation experiments also demonstrated a strong binding affinity between TG2 and Grp78, implying that Grp78 could be a chaperone for TG2 under conditions of oxidative stress. These observations are interesting, but at this point, we know little about the roles played by TG2 in the formation of mitochondrial fusion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:45:35Z (GMT). No. of bitstreams: 1 ntu-98-R96b46006-1.pdf: 2054765 bytes, checksum: 654d77a240d34f6c213d9c502eb436dd (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要: i
英文摘要: ii 縮寫表: iv 目錄: vi 第一章 前言 1 1.1砷化物的介紹 1 1.1.1三氧化二砷的應用與造成的影響 1 1.1.2三氧化二砷在細胞內的分子機制 2 1.1.3三氧化二砷與細胞內的壓力顆粒(Stress Granule:SG) 4 1.2 轉穀氨醯胺酶II(transglutaminse II:TG2)的介紹 9 1.3 研究動機 11 第二章 實驗材料與方法 15 2.1細胞株培養 15 2.1.1繼代培養 15 2.1.2細胞冷凍與解凍 15 2.2藥物配製與加藥處理 15 2.3 反轉錄聚合酶連鎖反應(RT-PCR) 15 2.3.1抽RNA 16 2.3.2反轉錄反應(reverse transcription) 16 2.3.3聚合酶連鎖反應((Polymerase Chain Reaction:PCR) 17 2.3.4洋菜膠電泳 17 2.4. 蛋白質分析法 18 2.4.1蛋白質萃取 18 2.4.2 Tricine/SDS聚丙烯醯胺凝膠電泳(Tricine/SDS-PAGE) (79) 18 2.4.3西方墨點法(western blotting) 19 2.4.4 蛋白質膠片染色(protein coomassie blue G-250 stainning) 20 2.4.5 銀染色法(silver staining) 20 2.5免疫螢光染色法(immunoflurorescence: IF) 20 2.6 共同免疫沉澱反應(Co-Immunoprecipitation:CO-IP) 21 2.7胞內鈣離子的測定 21 2.8粒線體膜電位的測定 22 2.8.1粒線體蛋白的抽取 22 2.9細胞內活性氧分子(ROS: reactive oxygen species)的測定 22 2.10 製備多株抗體 22 2.10.1 核酸引子的設計 22 2.10.2核酸酵素切割與片段純化 23 2.10.3重組質體的接合(Ligation)及轉形作用(Transformation) 23 2.10.4 純化重組蛋白 24 2.10.5 抗原的製備 24 2.10.6多株抗體血清的製備 24 2.11 in vivo transamidation 25 2.12 in vitro transamidation 25 第三章 結果 26 3.1 TG2部分受質的多株抗體製備 26 3.2 三氧化二砷引起Cos-1細胞株壓力顆粒的產生 26 3.3 壓力顆粒與TG2和TG2部分受質的關係 27 3.4 三氧化二砷處理下,細胞內鈣離子與TG2活性,RNA及蛋白質表現量的影響 27 3.5 三氧化二砷處理下,在細胞內TG2分佈位置與胞器之間的關係 29 3.6 三氧化二砷會造成Cos-1細胞產生mitoptosis 30 3.7 三氧化二砷所造成的mitoptosis與mitochondrial fusion之間的關係 30 3.8 三氧化二砷對TG2與內質網chaperone Grp78的結合關係 32 3.9 三氧化二砷與Grp78和Bcl-2之間的關係 32 第四章 討論與總結 34 4.1 三氧化二砷利用砷攻擊TG2上的thiol group (SH)造成細胞內TG2的活性下降 34 4.2三氧化二砷造成粒線體聚集在細胞核和MTOC周邊只發生粒線體融合反應(mitochondrial fusion)不發生粒線體分裂反應(fission) 35 4.3 三氧化二砷造成TG2座落在粒線體結構中可能扮演的角色 37 4.4 SGs新成分的發現 38 4.5 總結 39 第五章 實驗結果圖表 40 參考文獻: 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 三氧化二砷 | zh_TW |
| dc.subject | 壓力顆粒 | zh_TW |
| dc.subject | 活性氧自由基 | zh_TW |
| dc.subject | 粒線體膜電位 | zh_TW |
| dc.subject | 轉穀氨醯胺酶 | zh_TW |
| dc.subject | 粒線體融合反應 | zh_TW |
| dc.subject | stress granule | en |
| dc.subject | transglutaminase II | en |
| dc.subject | mitochondrial fusion | en |
| dc.subject | mitochondrial membrane potential | en |
| dc.subject | reactive oxygen species | en |
| dc.subject | arsenic trioxide | en |
| dc.title | 探討Cos-1細胞在三氧化二砷所引起的氧化壓力下轉穀氨醯胺酶II及它的受質的角色 | zh_TW |
| dc.title | The roles of transglutaminase II and its substrates in arsenic trioxide-induced cellular stress responses in Cos-1 cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明亭,黃銓珍,張茂山,陳宏文 | |
| dc.subject.keyword | 壓力顆粒,活性氧自由基,粒線體膜電位,轉穀氨醯胺酶,粒線體融合反應,三氧化二砷, | zh_TW |
| dc.subject.keyword | stress granule,reactive oxygen species,mitochondrial membrane potential,mitochondrial fusion,transglutaminase II,arsenic trioxide, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
