Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23148Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張國鎮 | |
| dc.contributor.author | Yu-Pang Peng | en |
| dc.contributor.author | 彭玉邦 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:44:22Z | - |
| dc.date.copyright | 2009-08-06 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-03 | |
| dc.identifier.citation | 1. A. Palermo, S. Pampanin, and D. Marriott, “Design, Modeling, and Experimental Response of Seismic Resistant Bridge Piers with Posttensioned Dissipating Connections”, Journal of Structural Engineering, ASCE, Vol. 133, No. 11, November 1, 2007.
2. Bibiana Maria Luccioni, Daniel Ernesto Lopez, and Rodolfo Francisco Danesi, “Bond-Slip in Reinforced Concrete Elements”, Journal of Structural Engineering, ASCE, Vol. 131, No. 11, November 1, 2005. 3. Constantin Christopoulos, Andre Filiatrault, M. ASCE, Chia-Ming Uang, M.ASCE, and Bryan Folz, “Posttensioned Energy Dissipating Connections for Moment- Resisting Steel Frames”, Journal of Structural Engineering, ASCE, Vol. 128, No. 9, September 1, 2002. 4. Constantin Christopoulos, “Frequency Response of Flag-Shaped Single Degree- of-Freedom Hysteretic Systems”, Journal of Engineering Mechanics, Vol. 130, No. 8, August 1, 2004. 5. Chung-Che Chou, and Yu-Chih Chen, “Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands”, Wiley InterScience. DOI: 10.1002/eqe.512, May 20, 2005. 6. Chung-Che Chou, andChih-Po Hsu, “Hysteretic model development and seismic response of unbonded post-tensioned precast CFT segmental bridge columns”, DOI: 10.1002/eqe.796, December 15, 2007. 7. Dan J. Raynor, Dawn E. Lehman, and John F. Stanton, “Bond-Slip Response of Reinforcing Bars Grouted in Ducts”, ACI Structural Journal, Title no. 99-S58, October, 2002. 8. J. B. Mander, M. J. N. Priestley, and R. Park, Fellow, ASCE, “THEORETICAL STRESS-STRAIN MODEL FOR CONFINED CONCRETE”, Journal of Structural Engineering, Vol. 114, No. 8, August, 1988. 9. Jeong-Ho Moon, and Ned H. Burns, Member, ASCE, “FLEXURAL BEHAVIOR OF MEMBER WITH UNBONDED TENDONS. I:THEORY”, Journal of Structural Engineering, Vol. 123, No. 8, August, 1997. 10. Jeong-Ho Moon, and Ned H. Burns, Member, ASCE, “FLEXURAL BEHAVIOR OF MEMBER WITH UNBONDED TENDONS. II:APPLICATIONS”, Journal of Structural Engineering, Vol. 123, No. 8, August, 1997. 11. J.I. Restrepo, and D. Wilkinson, “EMBEDMENT LENGTH OF STARTER BARS GROUTED INTO REINFORCED CONCRETE MEMBERS”, Journal of the New Zealand Structural Engineering Society, Volume 10 No.2 December 1997. 12. Joshua T. Hewes and M. J. Nigel Priestley, “Seismic Design and Performance of Precast Concrete Segmental Bridge Columns”, Report No. SSRP 2001/25, University of California at San Diego, La Jolla, California, May, 2002. 13. Junichi Sakai, Hyungil Jeong, and Stephen A. Mahin, “REINFORCED CONCRETE BRIDGE COLUMNS THAT RE-CENTER FOLLOWING EARTHQUAKES”, Proceedings of the 8th U.S. National Conference on Earthquake Engineering, Paper No.1421, April 18-22, 2006, San Francisco, California, USA. 14. Marriott. D, Boys. A, Pampanin S, and A. Palermo, “Experimental Validation of High-Performance Hybrid Bridge Piers”, 2006 NZSEE Conference, Paper Number 19, 2006. 15. Marc J. Veletzos, and Jos I. Restrepo, “SEISMIC RESPONSE OF PRECAST SEGMENTAL BRIDGE SUPERSTRUCTURES WITH BONDED TENDONS”, 4th International Conference on Earthquake Engineering, Taipei, Taiwan, Paper No.273, October 12-13, 2006. 16. Yu-Chen Ou, Il-Sang Ahn, Stuart S.Chen, George C. Lee, Methee Chiewanichakorn, Amjad J. Aref, and Andre Filiatrault, “Cyclic Performance of Precast Concrete Segmental Bridge Columns”, Department of Civil, Structural, and Environmental Engineering, State University of New York at Buffalo, November 15, 2005. 17. Yu-Chen Ou, “PRECAST SEGMENTAL POST-TENSIONED CONCRETE BRIDGE COLUMNS FOR SEISMIC REGIONS” , the thesis of PhD of State University of New York at Buffalo, June 2007. 18. Yu-Chen Ou, S.M.ASCE, Methee Chiewanichakorn, A.M.ASCE, Amjad J. Aref, M.ASCE, and George C. Lee, M.ASCE, “Seismic Performance of Segmental Precast Unbonded Posttensioned Concrete Bridge Columns”, Journal of Structural Engineering, Vol. 133, No. 11, November 1, 2007. 19. R. Sause, M.ASCE, J.M. Ricles, M.ASCE, S.W. Peng, and L.W. Lu, M.ASCE, “Experimental Evaluation of Earthquake Resistant Posttensioned Steel Connections “, Journal of Structural Engineering, Vol. 128, No. 7, July 1, 2002. 20. Sarah L. Billington, Robert W. Barnes, and John E. Breen, “A Precast Segmental Substructure System for Standard Bridges”, PCI Journal, Vol. 44, No. 4, July-August 1999, page56-73. 21. Sarah L. BILLINGTON, and Jaekyung K. YOON, “CYCLIC BEHAVIOR OF PRECAST POST-TENSIONED SEGMENTAL CONCRETE COLUMNS WITH ECC”, Proceeding of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites(DFRCC)-Application and Evaluation-, October 2002. 22. S.L. Billington, and J.K. Yoon, “Cyclic Response of Unbonded Posttensioned Precast Columns with Ductile Fiber-Reinforced Concrete”, Journal of Bridge Engineering, Vol. 9, No. 4, July 1, 2004. 23. Wing-Pin Kwan, A.M.ASCE, and Sarah L. Billington, A.M.ASCE, “Unbonded Posttensioned Concrete Bridge Piers.I:Monotonic and Cyclic Analyses”, Journal of Bridge Engineering, Vol. 8, No. 2, March 1, 2003. 24. Wing-Pin Kwan, A.M.ASCE, and Sarah L. Billington, A.M.ASCE, “Unbonded Posttensioned Concrete Bridge Piers.II:Seismic Analyses”, Journal of Bridge Engineering, Vol. 8, No. 2, March 1, 2003. 25. 汪向榮,指導教授:莫詒隆,「預鑄中空矩形橋柱之抗彎行為」,碩士論文,國立成功大學土木工程研究所,6月,1999。 26. 劉春勝,指導教授:陳清泉,「含無握裹後拉預力梁預鑄混凝土構架之韌性研究」,碩士論文,國立台灣大學土木工程學研究所,6月,2002。 27. 張國鎮、羅俊雄、丘惠生、黃震興、鄭橙標、王瑞禎,「預鑄節塊橋墩結構耐震行為特性及在國內應用時相關設計之研究(第一期)」,研究報告129,交通部台灣區國道新建工程局,7月,2002。 28. 張國鎮、羅俊雄、丘惠生、黃震興、鄭橙標、王瑞禎,「預鑄節塊橋墩結構耐震行為特性及在國內應用時相關設計之研究(第二期)」,研究報告134,交通部台灣區國道新建工程局,9月,2003。 29. 李有豐、黃皓君、張順益,「非韌性雙層雙跨含牆RC構架之擬動態試驗」,中華民國第七屆結構工程研討會,8月22~24日,2004。 30. 聯邦工程顧問股份有限公司、李森枏,「SAP2000入門與工程上之應用」,8月,2002。 31. 聯邦工程顧問股份有限公司、李森枏,「SAP2000結構設計實務」,9月,2005。 32. 陳皇嘉,指導教授:張國鎮,「裝設橡膠支承墊於橋梁縮尺模型之試驗與分析」,碩士論文,國立台灣大學土木工程學研究所,6月,2005。 33. 王瑞禎,指導教授:張國鎮、陳振川,「預鑄節塊橋柱試驗及行為研究」,博士論文,國立台灣大學土木工程學研究所,7月,2005。 34. 營建雜誌社,「建築物耐震設計規範及解說」,1月,2006。 35. 許智堡,指導教授:周中哲,「預力預鑄節塊橋柱之遲滯模型與地震作用下之反應」,碩士論文,國立交通大學土木工程學系碩士班,7月,2006。 36. 人民交通出版社,「SAP2000中文版使用指南」,九月,2006。 37. 張國鎮、George C. Lee、歐昱辰、王柄雄、蔡木森,「台灣與美國合作後拉式預鑄節塊橋柱試驗研究」,國家地震工程研究中心,計畫編號:06096A1004,2006.1.15 ~ 2007.12.15。 38. 林紹傑,指導教授:宋裕祺,「預鑄節塊外置預力橋墩之耐震行為分析」,碩士論文,國立台北科技大學土木與防災研究所,6月,2008。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23148 | - |
| dc.description.abstract | 橋梁預鑄節塊工法是一結合預鑄產製及機械化吊裝的施工方式,其在生產上由於採預鑄方式製造,除了讓橋樑工程師可以降低施工期間的意外事件、免除施工期間對交通的中斷影響及加快建造的速度外,亦可同時確保橋樑應有的建造品質及降低橋樑使用年限間的維護費用與建造期間對週遭環境的衝擊。但由於此類橋柱之耐震能力及行為等尚處於研究階段,因此多使用於低地震威脅的地區,且如美國加州及台灣等屬於中高地震區之區域都沒有採用任何以預鑄節塊工法建造的橋柱。因此,為了解以預鑄節塊工法建造的橋柱在強震區之耐震行為,由台灣的國家地震工程研究中心(NCREE)與美國University of New York at Buffalo的地震相關工程研究中心(MCEER)共同建立合作研究計畫。
有鑑於此類橋柱之實際應用尚處於研究階段,且尚未有相關規範明確訂定此類橋柱之設計準則,為了在試驗開始進行之前即可事先了解此類橋柱之基本性質,本研究以上述計畫探討之後拉式預力鋼建預鑄節塊橋柱為對象,並以已開發之有限元素分析軟體SAP作為分析工具,發展出一套可評估此類橋柱之耐震能力及運動行為之模型,使吾人在進行各種尺寸、配置方式及外觀之預鑄橋柱試驗之前,可先行建立此橋柱之模型進行參數分析,預測各項參數調整對於模型整體表現的影響,並觀察其在地震作用下的行為反應。 分析結果顯示本研究所發展之純預力鋼建節塊橋柱有限元素分析模型,以適合之設計構想為出發點,依照實際橋柱試體之材料強度、斷面性質、各部元件以及幾何運動行為來建置模型,對於此類橋柱在反覆載重作用下之預測結果尚為良好,其節塊開口行為及開口幅度、橋柱曲率變化以及橋柱初始勁度等皆與試驗結果相當符合;惟純預力鋼腱節塊橋柱試體於反覆載重試驗過程中並無塑鉸產生,其消能能力乃藉由柱底節塊保護層混凝土之碎裂、鋼腱與套管間之磨擦以及節塊間相當微小之相對移動來提供,而依照SAP模型以非線性靜力分析之設定並無法模擬此消能行為,但可預測遲滯迴圈之包絡線(pushover curve);若以SAP模型進行非線性動力歷時分析來模擬試體在擬動態試驗下之反應,可在SAP中指定模型之阻尼比,對於試體在擬動態試驗下所引致之消能行為之模擬結果相較於反覆載重試驗來說,遲滯迴圈較為飽滿,因此在後續研究中亦可考慮SAP模型以非線性動力歷時分析來模擬反覆載重試驗。另外本研究亦提出用來模擬具有消能鋼筋試體之模型,因對於節塊橋柱之潛在塑鉸區行為尚無法完全掌握,模型之塑絞不易定義,故在此採用簡易分析,利用非線性元件來模擬節塊間之消能鋼筋。 | zh_TW |
| dc.description.abstract | The use of the precast modular construction for bridge column is the way which combines the previous casting work in the factory and the mechanization method of fabrication. Due to the precast way of production, it allows bridge engineers to minimize accidents in the work zone, to reduce traffic disruptions, and to increase the speed of construction, while maintaining construction quality and minimizing the life-time cost and environment impact. Because the seismic resistance and behavior of this kind of column is still being studied, most of the applications, however, have been in low-seismicity regions. In particular, there hasn’t been any application of the segmental precast bridge column in moderate to high-seismicity regions such as the state of California in United States or Taiwan. In order to investigate the use of segmental precast bridge columns in high-seismicity regions, a cooperative research project is established between the National Center for Research on Earthquake Engineering (NCREE) in Taiwan and Multidisciplinary Center for Earthquake Engineering Research (MCEER) at University of New York at Buffalo in the United States.
First considering the application of segmental precast bridge column is still under investigated, and no relative standards or codes provide the detail guideline to design this kind of column. In order to understand the basic properties of the column before the test begun, this research takes the post-tensioned segmental precast bridge column described previously as the object and uses the developed finite element analysis software ― SAP , to develop a model which can estimate the seismic capacity and mechanical behavior of the column. According to this model, before the beginning of segmental precast bridge column tests in different sizes, design ways and figures, we can establish the SAP model to run parametric analysis, predict the effect of parameter adjustment to the model performance, and observe the behavior of the column under seismicity. The analysis results show that the finite element model of post-tensioned segmental bridge column can predict its seismic behavior well under cyclic loading, like the opening behavior, opening amplitude, curvature distribution and the initial stiffness of the column. The analysis results match the test results well, if we establish the SAP model according to the material strength, section properties, column members and the mechanical behavior of the real column in test. During the cyclic loading test, no plastic hinge is developed in the post-tensioned segmental bridge column, and the hysteretic energy dissipation of the column comes from the crush and spalling of the base segment, the friction between the tendons and tubes, and the slight relative displacement between segments. However, the SAP model can’t simulate the hysteretic behavior of the column under cyclic loading by nonlinear static analysis, but can simulate the envelope of the hysteretic loop (pushover curve); if we use the SAP model to simulate the column behavior under pseudo dynamic test by nonlinear time history analysis, we can assign the damping ratio of the model, then the simulation of the hysteretic behavior under pseudo dynamic test is better then under cyclic loading test. According to this result, we might consider the possibility of using SAP model to simulate the segmental precast column under cyclic loading by nonlinear time history analysis. Besides this research also develop the model used to simulate the specimen with energy dissipation bars (ED bars). Because of the uncertainty of the potential plastic hinge zone of segmental bridge column, we use simple method to simulate the ED bars between segments by nonlinear link. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:44:22Z (GMT). No. of bitstreams: 1 ntu-98-R95521204-1.pdf: 7733744 bytes, checksum: dcbc09e6b580b5c830207306f7b5a872 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 第一章 緒論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.1 前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 1.2 研究背景與目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 1.3 內容簡介‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3 第二章 文獻回顧及預鑄節塊橋柱介紹‥‥‥‥‥‥‥‥‥‥‥‥6 2.1 相關案例及試驗‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 2.2 相關理論分析模型介紹‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17 2.2.1 遲滯模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17 2.2.2 簡易分析模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21 2.2.3 有限元素分析模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥27 2.3 設計概念‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥29 2.3.1 節塊接頭‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥29 2.3.2 消能行為‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30 2.3.3 後拉預力裝置‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31 2.3.4 橋柱斷面‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31 2.4 行為特性介紹‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥32 第三章 理論分析模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥36 3.1 一般RC柱分析模式‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥36 3.2 預力柱斷面分析模式‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥39 3.3 本研究之分析方式‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥44 3.3.1 無握裹鋼腱柱‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥44 3.3.2 載重變位分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥49 3.4 材料組成率‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥51 3.4.1 混凝土‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥51 3.4.2 鋼筋‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥59 3.4.3 預力鋼腱‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥60 第四章 縮尺預鑄節塊橋柱試驗‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥62 4.1 試驗規劃‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥62 4.1.1 試體設計‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥62 4.1.2 反覆載重試驗‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥66 4.1.3 擬動態試驗‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥68 4.2 試體裝置及試驗方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72 4.2.1 軸力系統‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥72 4.2.2 側力系統‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥73 4.2.3 量測系統‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥73 4.2.4 試驗方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥79 4.3 試體構件及材料‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥81 4.3.1 試體構件‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥81 4.3.2試體材料‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 82 第五章 試體之模擬與分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥86 5.1 工具軟體介紹‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥86 5.2 軟體功能介紹‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥87 5.3 材料性質分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥88 5.4 橋柱各部構件斷面‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥88 5.5 斷面性質分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥90 5.6 塑鉸性質‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥90 5.7 有限元素分析模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥93 5.7.1 模型設計概念‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥93 5.7.2 模型建立‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥95 5.7.3 反覆載重分析設定‥‥‥‥‥‥‥‥‥‥‥‥‥ 102 5.7.4 擬動態分析設定‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 103 5.8 模型測試‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 105 5.9 分析與試驗結果之比較‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 110 5.9.1 純預力鋼腱節塊橋柱之模擬結果‥‥‥‥‥‥‥ 110 5.9.2 具備5號消能鋼筋節塊橋柱之模擬結果‥‥‥‥‥120 5.9.3 SAP模型之使用可行性評估‥‥‥‥‥‥‥‥‥‥131 5.9.4 小結‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 135 第六章 結論與未來展望‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 136 6.1 結論與建議‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 136 6.2 未來展望‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 139 參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 141 | |
| dc.language.iso | zh-TW | |
| dc.subject | 消能鋼筋 | zh_TW |
| dc.subject | 預鑄 | zh_TW |
| dc.subject | 節塊橋柱 | zh_TW |
| dc.subject | 後拉式預力 | zh_TW |
| dc.subject | 有限元素 | zh_TW |
| dc.subject | SAP | zh_TW |
| dc.subject | 反覆載重 | zh_TW |
| dc.subject | 擬動態 | zh_TW |
| dc.subject | segmental column | en |
| dc.subject | precast | en |
| dc.subject | post-tensioned | en |
| dc.subject | ED bars | en |
| dc.subject | pseudo dynamic | en |
| dc.subject | cyclic loading | en |
| dc.subject | SAP | en |
| dc.subject | finite element | en |
| dc.title | SAP軟體應用於預鑄節塊橋柱分析之可行性研究 | zh_TW |
| dc.title | The SAP Application to Precasted Segmental Bridge Column Feasibility Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋裕祺,歐昱辰 | |
| dc.subject.keyword | 預鑄,節塊橋柱,後拉式預力,有限元素,SAP,反覆載重,擬動態,消能鋼筋, | zh_TW |
| dc.subject.keyword | precast,segmental column,post-tensioned,finite element,SAP,cyclic loading,pseudo dynamic,ED bars, | en |
| dc.relation.page | 145 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 7.55 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
