Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪惠敏
dc.contributor.authorHao-Wei Pengen
dc.contributor.author彭浩維zh_TW
dc.date.accessioned2021-05-13T06:39:06Z-
dc.date.available2019-08-25
dc.date.available2021-05-13T06:39:06Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-16
dc.identifier.citationArchibald, A. T., Tonokura, K., Kawasaki, M., Percival, C. J., & Shallcross, D. E. (2011). On the Impact of HO2-H2O Complexes in the Marine Boundary Layer: A Possible Sink for HO2. Terrestrial Atmospheric and Oceanic Sciences, 22(1), 71-78. doi:10.3319/tao.2010.07.20.01(a)
Badali, K. M., Zhou, S., Aljawhary, D., Antinolo, M., Chen, W. J., Lok, A., . . . Abbatt, J. P. D. (2015). Formation of hydroxyl radicals from photolysis of secondary organic aerosol material. Atmospheric Chemistry and Physics, 15(14), 7831-7840. doi:10.5194/acp-15-7831-2015
Ball, S. M., Hanson, D. R., Eisele, F. L., & McMurry, P. H. (1999). Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors. Journal of Geophysical Research-Atmospheres, 104(D19), 23709-23718. doi:10.1029/1999jd900411
Boy, M., & Kulmala, M. (2002). Nucleation events in the continental boundary layer: Influence of physical and meteorological parameters. Atmospheric Chemistry and Physics, 2, 1-16.
Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B., & Warren, S. G. (1991). Perturbation of the northern-hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus Series a-Dynamic Meteorology and Oceanography, 43(4), 152-163. doi:10.1034/j.1600-0870.1991.00013.x
Chen, J. P., Tsai, I. C., & Lin, Y. C. (2013). A statistical-numerical aerosol parameterization scheme. Atmospheric Chemistry and Physics, 13(20), 10483-10504. doi:10.5194/acp-13-10483-2013
Engelhart, G. J., Asa-Awuku, A., Nenes, A., & Pandis, S. N. (2008). CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol. Atmospheric Chemistry and Physics, 8(14), 3937-3949.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5(6), 1471-1492. doi:10.5194/gmd-5-1471-2012
Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles: Wiley.
Jackervoirol, A., & Mirabel, P. (1989). Heteromolecular nucleation in the sulfuric acid-water system. Atmospheric Environment, 23(9), 2053-2057.
Jefferson, A., Eisele, F. L., Ziemann, P. J., Weber, R. J., Marti, J. J., & McMurry, P. H. (1997). Measurements of the H2SO4 mass accommodation coefficient onto polydisperse aerosol. Journal of Geophysical Research-Atmospheres, 102(D15), 19021-19028. doi:10.1029/97jd01152
Jimenez, E., Gilles, M. K., & Ravishankara, A. R. (2003). Kinetics of the reactions of the hydroxyl radical with CH3OH and C2H5OH between 235 and 360 K. Journal of Photochemistry and Photobiology a-Chemistry, 157(2-3), 237-245. doi:10.1016/s1010-6030(03)00073-x
Jonsson, A. M., Hallquist, M., & Ljungstrom, E. (2006). Impact of humidity on the ozone initiated oxidation of limonene, Delta(3)-carene, and alpha-pinene. Environmental Science & Technology, 40(1), 188-194. doi:10.1021/es051163w
Jonsson, A. M., Hallquist, M., & Ljungstrom, E. (2008). Influence of OH scavenger on the water effect on secondary organic aerosol formation from ozonolysis of limonene, Delta(3)-carene, and alpha-pinene. Environmental Science & Technology, 42(16), 5938-5944. doi:10.1021/es702508y
Kamens, R., Jang, M., Chien, C. J., & Leach, K. (1999). Aerosol formation from the reaction of alpha-pinene and ozone using a gas-phase kinetics aerosol partitioning model. Environmental Science & Technology, 33(9), 1430-1438. doi:10.1021/es980725r
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., . . . Wilson, J. (2005). Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5, 1053-1123.
Korhonen, P., Kulmala, M., Laaksonen, A., Viisanen, Y., McGraw, R., & Seinfeld, J. H. (1999). Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere. Journal of Geophysical Research-Atmospheres, 104(D21), 26349-26353. doi:10.1029/1999jd900784
Kulmala, M., Pirjola, U., & Makela, J. M. (2000). Stable sulphate clusters as a source of new atmospheric particles. Nature, 404(6773), 66-69. doi:10.1038/35003550
Kurtén, T., Tiusanen, K., Roldin, P., Rissanen, M., Luy, J.-N., Boy, M., . . . Donahue, N. (2016). α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios. The Journal of Physical Chemistry A, 120(16), 2569-2582. doi:10.1021/acs.jpca.6b02196
Laaksonen, A., Kulmala, M., O'Dowd, C. D., Joutsensaari, J., Vaattovaara, P., Mikkonen, S., . . . Viisanen, Y. (2008). The role of VOC oxidation products in continental new particle formation. Atmospheric Chemistry and Physics, 8(10), 2657-2665.
Lee, A., Goldstein, A. H., Keywood, M. D., Gao, S., Varutbangkul, V., Bahreini, R., . . . Seinfeld, J. H. (2006). Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. Journal of Geophysical Research-Atmospheres, 111(D7), 18. doi:10.1029/2005jd006437
Li, W. K., & McKee, M. L. (1997). Theoretical study of OH and H2O addition to SO2. Journal of Physical Chemistry A, 101(50), 9778-9782. doi:10.1021/jp972389r
Nilsson, E. D., & Kulmala, M. (1998). The potential for atmospheric mixing processes to enhance the binary nucleation rate. Journal of Geophysical Research-Atmospheres, 103(D1), 1381-1389. doi:10.1029/97jd02629
Riba, M. L., Tathy, J. P., Tsiropoulos, N., Monsarrat, B., & Torres, L. (1987). Diurnal-variation in the concentration of alpha-pinene and beta-pinene in the landes forest (France). Atmospheric Environment, 21(1), 191-193. doi:10.1016/0004-6981(87)90285-x
Saathoff, H., Naumann, K. H., Mohler, O., Jonsson, A. M., Hallquist, M., Kiendler-Scharr, A., . . . Schurath, U. (2009). Temperature dependence of yields of secondary organic aerosols from the ozonolysis of alpha-pinene and limonene. Atmospheric Chemistry and Physics, 9(5), 1551-1577.
Sipila, M., Berndt, T., Petaja, T., Brus, D., Vanhanen, J., Stratmann, F., . . . Kulmala, M. (2010). The Role of Sulfuric Acid in Atmospheric Nucleation. Science, 327(5970), 1243-1246. doi:10.1126/science.1180315
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., . . . Yarber, K. F. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research-Atmospheres, 108(D21), 23. doi:10.1029/2002jd003093
Twomey, S. (1977). Influence of pollution on shortwave albedo of clouds. Journal of the Atmospheric Sciences, 34(7), 1149-1152. doi:10.1175/1520-0469(1977)034<1149:tiopot>2.0.co;2
Verma, V., Fang, T., Xu, L., Peltier, R. E., Russell, A. G., Ng, N. L., & Weber, R. J. (2015). Organic Aerosols Associated with the Generation of Reactive Oxygen Species (ROS) by Water-Soluble PM2.5. Environmental Science & Technology, 49(7), 4646-4656. doi:10.1021/es505577w
Weber, R. J., Chen, G., Davis, D. D., Mauldin, R. L., Tanner, D. J., Eisele, F. L., . . . Bandy, A. R. (2001). Measurements of enhanced H2SO4 and 3-4 nm particles near a frontal cloud during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research-Atmospheres, 106(D20), 24107-24117. doi:10.1029/2000jd000109
White, W. H., & Roberts, P. T. (1977). Nature and origins of visibility-reducing aerosols in Los-Angeles air basin. Atmospheric Environment, 11(9), 803-812. doi:10.1016/0004-6981(77)90042-7
Zhang, D., & Zhang, R. (2005). Ozonolysis of alpha-pinene and beta-pinene: Kinetics and mechanism. Journal of Chemical Physics, 122(11), 12. doi:10.1063/1.1862616
Zhang, X., McVay, R. C., Huang, D. D., Dalleska, N. F., Aumont, B., Flagan, R. C., & Seinfeld, J. H. (2015). Formation and evolution of molecular products in alpha-pinene secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 112(46), 14168-14173. doi:10.1073/pnas.1517742112
歐庭維 (2014). 紫外光誘發粒子生成現象之探討
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2311-
dc.description.abstract本研究利用實驗與模式模擬,探討室溫下α-蒎烯與臭氧反應之新生粒子現象在不同臭氧濃度及相對濕度下的表現及其原因,並且推論反應中產生的自由基與另外加入的人為排放(SO2)在此反應中扮演之角色。本實驗使用掃描式電動度粒徑分析儀(SMPS)測量反應所產生之粒徑譜,初始α-蒎烯濃度(19.3 ppm與15.4 ppm)遠高於初始臭氧濃度(0.04 - 0.12 ppm),相對溼度為< 1 %、36 %及54 %。為了探討在不同環境下的化學反應及物理過程如何影響氣膠量及粒徑分布,本研究使用氣相化學盒子模式(Box model)與粒徑譜模式(Particle spectral model)進行產物量與粒徑譜之模擬,並估算產物的飽和蒸氣壓與其核化、凝結速率等參數。
實驗結果顯示初始臭氧濃度於0.05至0.12 ppm之範圍內,氣膠數量與質量濃度皆隨著初始臭氧濃度而提升,推測是因氣態的低揮發性產物在初始臭氧濃度為約0.05 ppm之條件下可達到飽和並形成氣膠,由模式估計本研究之低揮發性產物的飽和蒸氣壓約在3.7 × 10^-10至1.6 × 10^-8 bar之間。當提高相對濕度至36 %與54 %時,氣膠的質量濃度隨著水氣量有下降之趨勢,此現象可能是由於HO2•H2O複合物之形成,消耗了系統中的HO2自由基,使產物氧化程度減少並導致形成之氣膠量下降。當氣流中添加了3900 ppm的OH自由基移除劑,甲醇,新生粒子現象即明顯被抑制,推測OH自由基對於氣膠之生成有重大的影響;模式結果顯示,本系統中最多有27 %之HO2自由基與79 %之OH自由基分別被水氣與甲醇消耗。以6.3 ppm之二氧化硫代表人為排放加入系統後,可測量到很多小粒子生成,藉由模式得知二氧化硫與OH自由基反應產生了0.35 ppb之硫酸,推測硫酸加強了系統的核化現象,導致小粒子大量生成;以模式估算核化速率後發現,硫酸在本系統中的核化速率遠超過同樣濃度的硫酸與水之雙組份系統的核化速率,因此推測實驗觀測到之粒子生成現象可能是硫酸-水-有機物之多組份核化所造成的結果。
本研究對於α-蒎烯與臭氧在不同環境下進行之化學反應提出了較明確的看法,尤其是在自由基的部分,此研究結論有可能適用於其他有機物質之反應;另外,本研究對於核化與凝結之物理過程進行了模擬與測試,在估算大氣中的氣膠數量與質量濃度之應用上提供了可能的參考方向。
zh_TW
dc.description.abstractIn this study, the new particle formation from the ozonolysis of α-pinene as a function of initial ozone concentration ([O3]i) and relative humidity (RH) was studied using a scanning mobility particle sizer spectrometer (SMPS) to monitor the size distribution of submicrometer particles at room temperature. How the radicals produced from the chemical reactions and the impact of the addition of anthropogenic emissions (SO2) on the particle formation were investigated. The applied initial concentration of α-pinene (19.3 ppm and 15.4 ppm) was much higher than [O3]i (0.04 - 0.12 ppm), and RH was controlled at < 1 %, 36 % and 54 %. A box model was constructed to simulate the concentration of products with possible chemical reactions while a particle spectral model was applied to simulate the particle size distribution, with the adjustment of physical processes and chemical kinetic parameters of the products such as the saturation vapor pressure, nucleation and condensation rate of products.
The results showed a positive correlation of the produced SOA to [O3]i in both number and mass concentration for [O3]i in the range of 0.05 - 0.12 ppm. It is likely due to the produced low-volatility products reaching the saturation point at [O3]i = 0.05 ppm. The saturation vapor pressure was estimated to be 3.7 × 10^-10 - 1.6 × 10^-8 bar by model simulation. For a given [O3]i, SOA mass concentration showed a decreasing trend with RH. It is surmised that water vapor may react with HO2 to form HO2•H2O, which decreases the overall oxidation of α-pinene-O3 system. With the addition of 3900 ppm of methanol vapor, a scavenger of OH, the new particle formation was then almost inhibited. By simulations, it was estimated that at most 27 % of HO2 radical and 79 % of OH radical were consumed by water and methanol vapor, respectively. With the addition of 6.3 ppm of SO2, one of the major anthropogenic emissions, a significant enhancement of smaller particles in number and mass concentration was observed likely due to the formation of H2SO4 from the reaction of SO2¬ with OH radical. By model simulation, it was estimated to have 0.35 ppb of H2SO4, which might lead to significant nucleation rate. A significant faster nucleation rate from our experimental system than that of H2SO4-H2O binary system with the same concentration of H2SO4 and H2O might suggest the importance of the produced organic species for the multi-component nucleation of H2SO4-H2O-organic system.
This study illustrated the new particle formation from the ozonolysis of α-pinene at different environments and suggested the importance of radicals, which might be extended to other organic compound systems. The nucleation and condensation processes from the model simulations might provide other regional models the possible physical and chemical parameters required to estimate the number and mass concentration of aerosols formed in such processes in real atmosphere.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:39:06Z (GMT). No. of bitstreams: 1
ntu-106-R04229023-1.pdf: 1838471 bytes, checksum: 78eda5ccfc4c4274bb7605435e60cc5a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 前言 1
1-1 簡介 1
1-2 文獻回顧 2
1-2.1 核化理論 2
1-2.2 VOC對於新生粒子之影響 3
1-2.3 實驗室研究 3
1-3 研究動機 4
第二章 研究方法 6
2-1 實驗設計 6
2-1.1 主要乘載氣流供應 6
2-1.2 相對濕度控制及其他氣體的供應 8
2-1.3 粒子測量裝置 8
2-2 模擬方法 9
2-2.1 氣相化學盒子模式設定 10
2-2.2 粒徑譜模式設定 11
2-3 管壁修正 13
第三章 實驗結果與討論 14
3-1 臭氧濃度之影響 14
3-2 水氣之影響 16
3-3 甲醇測試 18
3-4 二氧化硫對於新生粒子之影響 18
3-5 實驗與模式小結 21
3-6 綜合討論 21
第四章 結論與未來展望 25
4-1 結論 25
4-2 未來展望 26
參考文獻 27
附圖 31
附表 52
dc.language.isozh-TW
dc.titleα-蒎烯與臭氧反應產生粒子現象之探討zh_TW
dc.titleA Study of New Particle Formation from Ozonolysis of α-Pineneen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正平,陳維婷
dc.subject.keyword粒子生成,VOC,核化,OH自由基,HO2自由基,臭氧,水氣,硫酸,zh_TW
dc.subject.keywordNew particle formation,VOC,Nucleation,OH radical,HO2 radical,Ozone,Water vapor,sulfuric acid,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201703580
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf1.8 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved