請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23086完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉信宏(Hsin-Hung Yeh) | |
| dc.contributor.author | Hwa-Fang Hsu | en |
| dc.contributor.author | 許華芳 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:41:14Z | - |
| dc.date.copyright | 2009-08-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-12 | |
| dc.identifier.citation | 參考文獻
林維明。 1993。 英漢蘭學辭典。 220pp。 淑馨出版社,台北,台灣。 邱士豪。 2007。 東亞蘭嵌紋病毒快速偵測方法之建立。 國立台灣大學植物病理與微生物研究所碩士論文。 陸祥家。 2004。東亞蘭嵌紋病毒表現載體的構築與分析。私立南台科技大學化學工程研究所生物技術組碩士學位論文。 Abramovitch, R.B., Anderson, J.C., and Martin, G.B. 2006. Bacterial elicitation and evasion of plant innate immunity. Nat. Rev. Mol. Cell Biol. 7: 601-611. Al-Shahrour, F., Minguez, P., Vaquerizas, J.M., Conde, L., and Dopazo, J. 2005. Babelomics: a suite of web-tools for functional annotation and analysis of group of genes in high-throughput experiments. Nucleic Acids Res. 33: W460-W464. Al-Shahrour, F., Mínguez, P., Tárraga, J., Montaner, D., Alloza, E., Vaquerizas, J.MM., Conde, L., Blaschke, C., Vera, J., and Dopazo, J. 2006. BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res. 34: W472-W476. Balbi, V., and Devoto, A. 2008. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytologist 177: 301-318. Bittel, P., and Robatzek, S. 2007. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 10: 335-341. Carlson, L.E., Tulsieram, L.K., Glaubitz, J.C., Luk, V.W.K., Kauffeldt, C. and Rutledge, R. 1991. Segregation of random amplified DNA markers in F1 progeny of conifers. Theor. Appl. Genet. 83: 194–200. Century, K.S., Lagman, R.A., Adkisson, M., Morlan, J., Tobias, R., Schwartz, K., Smith, A., Love, J., Ronald, P.C., and Whalen, M.C. 1999. Developmental control of Xa21-mediated disease resistance in rice. Plant J. 20: 231-236. Chadha, P., and Das, R.H. 2006. A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity. Planta 225: 213-222. Chen, W.H., Lin, T.Y., Chen, C.C., Wu, W.L., and Chen, H.H. 2001. Genomic Study of Phalaenopsis orchid. Proceedings of APOC7. Nagoya, Japan. pp.150-153. Chen, C., and Chen, Z. 2002. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced arabidopsis transcription factor. Plant Physiol. 129: 706-716. Chisholm, S.T., Coaker, G., Day, B., and Staskawicz, B.J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814. Corbesier, L., and Coupland, G. 2006. The quest for florigen: a review of recent progress. J. Exp. Bot. 57: 3395-3403. de Wit, P. 2007. How plants recognize pathogens and defend themselves. Cell. Mol. Life Sci. 64: 2726-2732. Develey-Rivière, M.P., and Galiana, E. 2007. Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol. 175: 405-416. Devoto, A., and Turner, J.G. 2003. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann. Bot. 92: 329-337. Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Teh, T., Wang, C.I.A., Ayliffe, M.A., Kobe, B., and Ellis, J.G. 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natil. Acad. Sci. 103: 8888-8893. Dong, J., Chen, C., and Chen, Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biology 51: 21-37. Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316-323. Dong, X. 2004. NPR1, all things considered. Curr. Opin. Plant Biol. 7: 547-552. Soltis, D.E., Bell, C. D., Kim, S. and Soltis, P. S. 2008. Origin and early evolution of angiosperms. Ann. N. Y. Acad. Sci. 1133: 3-25. Dressler, R.L. 1993. Phylogeny and classification of the orchid family. Dioscorides Press, Portland, OR. pp. 314. Durrant, W.E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185-209. Eulgem, T., and Somssich, I.E. 2007. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10: 366-371. Eulgem, T., Rushton, P.J., Robatzek, S., and Somssich, I.E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206. Eulgem, T., Rushton,P.J., Schmelzer, E., Hahlbrock, K., and Somssich, I. E. 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J. 18: 4689-4699. Fobert, P.R., and Despres, C. 2005. Redox control of systemic acquired resistance. Curr. Opin. Plant Biol. 8: 378-382. Grant, M., and Lamb, C. 2006. Systemic immunity. Curr. Opin. Plant Biol. 9, 414-420. He, P., Shan, L., and Sheen, J. 2007. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant and microbe interactions. Cell. Microbiol. 9: 1385-1396. Hennig, J., Dewey, R.E., Cutt, J.R., and Klessig, D.F. 1993. Pathogen, salicylic acid and developmental dependent expression of a β-1,3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J. 4: 481-493. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucl. Acids Res: 27, 297-300. Honma, T., and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529. Huang, Z., Yeakley, J.M., Garcia, E.W., Holdridge, J.D., Fan, J.B., and Whitham, S.A. 2005. Salicylic acid-dependent expression of host genes in compatible Arabidopsis-virus interactions. Plant Physiol. 137: 1147-1159. Hugot, K., Aimé, S., Conrod, S., Poupet, A., and Galiana, E. 1999. Developmental regulated mechanisms affect the ability of a fungal pathogen to infect and colonize tobacco leaves. Plant J. 20: 163-170. Hugot, K., Riviere, M.P., Moreilhon, C., Dayem, M.A., Cozzitorto, J., Arbiol, G., Barbry, P., Weiss, C., and Galiana, E. 2004. Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes. Plant Physiol. 134: 858-870. Hung, T. H. , M. L. Wu, and H. J. Su. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147: 599-604. Hwang, S.H., Lee, I., Yie, S., and Hwang, D.J. 2008. Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227: 1141-1150. Imanishi, S., Nakakita, M., Yamashita, K., Furuta, A., Utsuno, K., Muramoto, N., Kojima, H., and Nakamura, K. 2000. Aspirin and salicylic acid do not inhibit methyl jasmonate-inducible expression of a gene for ornithine decarboxylase in tobacco BY-2 cells. Biosci. Biotech. Bioch. 64: 125-133. Ingle, R.A., Carstens, M., and Denby, K.J. 2006. PAMP recognition and the plant-pathogen arms race. BioEssays 28: 880-889. Irish, V.F. 1999. Patterning the Flower. Dev. Biol. 209: 211-220. Iriti, M., and Faoro, F. 2007. Review of innate and specific immunity in plants and animals. Mycopathologia 164: 57-64. Iwasaki, T., Miyazaki, W., Rokutanda, N. and Koibuchi, N. 2008. Liquid chemiluminescent DNA pull-down assay to measure nuclear receptor-DNA binding in solution. BioTechniques 45: 445-448. Jack, T. 2001. Relearning our ABCs: new twists on an old model. Trends in Plant Sci. 6: 310-316. Jack, T. 2004. Molecular and genetic mechanisms of floral control. Plant Cell 16: S1-S17. Jaeger, K.E., Graf, A., and Wigge, P.A. 2006. The control of flowering in time and space. J. Exp. Bot. 57: 3415-3418. Kim, S., Yu, S., Kang, Y., Kim, S., Kim, J.Y., Kim, S.H., and Kang, K. 2008. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep. 27: 593-603. Kitajima, S., and Sato, F. 1999. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J. Biochem. 125: 1-8. Komeda, Y. 2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55: 521-535. Kus, J.V., Zaton, K., Sarkar, R., and Cameron, R.K. 2002. Age-related resistance in arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 14: 479-490. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. Leisner, S.M., Turgeon, R., and Howell, S.H. 1992. Long distance movement of cauliflower mosaic virus in infected plants. Mol. Plant Microbe Interact. 5: 41-47. Leisner, S.M., Turgeon, R., and Howell, S.H. 1993. Effects of host plant development and genetics determinants on the long-distance movement of cauliflower mosaic virus in Arabidopsis. Plant Cell 5: 191–202. Liu, X., Huang, B., Lin, J., Fei, J., Chen, Z., Pang, Y., Sun, X., and Tang, K. 2006. A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress- and pathogen-inducible. J. Plant Physiol. 163: 546-556. Loake, G., and Grant, M. 2007. Salicylic acid in plant defence: the players and protagonists. Curr. Opin. Plant Biol. 10: 466-472. Lotan, T., Ori, N., and Fluhr, R. 1989. Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1: 881-887. Lu, H. C., Chen, H. H., Tsai, W. C., Chen, W. H., Su, H. J., Chang, D. C., and Yeh, H. H. 2007. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143, 558-569. Lu, H.C., Chen, C. E., Tsai, M. H., Wang, H. I., Su, H. J and Yeh, H. H. 2009. Cymbidium mosaic potexvirus isolate-dependent host movement systems reveal two movement control determinants and the coat protein is the dominant. Virology 388: 147-159. Mackey, D., and McFall, A.J. 2006. MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol. Microbiol. 61: 1365-1371. Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002-1004. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26: 403-410. Messenguy, F., and Dubois, E. 2003. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316: 1-21. Métraux, J.P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., and Inverardi, B. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004-1006. Mondragón-Palomino, M., and Theißen, G. 2008. MADS about the evolution of orchid flowers. Trends Plant Sci. 13: 51-59. Moose, S.P., and Sisco, P.H. 1994. Glossy15 Controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6: 1343-1355. Mou, Z., Fan, W., and Dong, X. 2003. Inducers of plant systemic acquired resistance regulate npr1 function through redox changes. Cell 113: 935-944. Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O., and Wasternack, C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140: 249-262. Naoumkina, M., He, X., and Dixon, R. 2008. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biol. 8: 132. Neale, A.D., Wahleithner, J.A., Lund, M., Bonnett, H.T., Kelly, A., Meeks-Wagner, D.R., Peacock, W.J., and Dennis, E.S. 1990. Chitinase, β-1,3-glucanase osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673-684. Nicholas, K.B., Nicholas H.B. Jr., and Deerfield, D.W. II. 1997. GeneDoc: Analysis and Visualization of Genetic Variation. EMBNEW. NEWS 4: 14. Nurrish, S., and Treisman, R. 1995. DNA binding specificity determinants in MADS-box transcription factors. Mol. Cell. Biol. 15: 4076-4085. Park, C.J., Kim, K.J., Shin, R., Park, J.M., Shin, Y.C., and Paek, K.H. 2004. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 37, 186-198. Pena-Cortés, H., Albrecht, T., Prat, S., Weiler, E.W., and Willmitzer, L. 1993. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123-128. Pieterse, C.M.J., and Van Loon, L.C. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7: 456-464. Prestridge, D.S. 1991. SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl. Biosci. 7: 203-206. Ratcliffe, O.J., and Riechmann, J.L. 2002. Arabidopsis transcription factors and the regulation of flowering time: a genomic perspective. Curr. Issues Mol. Biol. 4: 77-91. Saedler H, B.A., Winter KU, Kirchner C, and Theissen G. 2001. MADS-box genes are involved in floral development and evolution. Acta Biochim. Pol. 48: 351-358. Sambrook, J. and Russel, D. 2001. Molecular Cloning: A Laboratory Manual 3rd Ed. Cold spring harbor laboratory press, Cold spring harbor, New York. pp. 2344. Schlüer, P.M., and Schiestl, F.P. 2008. Molecular mechanisms of floral mimicry in orchids. Trends Plant Sci. 13: 228-235. Schwessinger, B., and Zipfel, C. 2008. News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 11: 389-395. Sels, J., Mathys, J., De Coninck, B.M.A., Cammue, B.P.A., and De Bolle, M.F.C. 2008. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol. Bioch. 46: 941-950. Smith, J.L., De Moraes, C.M., and Mescher, M.C. 2009. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag. Sci. 65: 497-503. Spoel, S.H., Johnson, J.S., and Dong, X. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. 104: 18842-18847. Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X., and Pieterse, C.M.J. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770. Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., and Fritig, B. 1993. Plant `pathogenesis-related' proteins and their role in defense against pathogens. Biochimie 75: 687-706. Thaler, J.S., Karban, R., Ullman, D.E., Boege, K., and Bostock, R.M. 2002. Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131, 227-235. Thomma, B.P.H.J., Penninckx, I.A.M.A., Cammue, B.P.A., and Broekaert, W.F. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13: 63-68. Tsai, W.C., Hsiao, Y.Y., Lee, S.H., Tung, C.W., Wang, D.P., Wang, H.C., Chen, W.H., and Chen, H.H. 2006. Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci. 170: 426-432. Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H., and Chen, H.H. 2004. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in phalaenopsis orchid. Plant Cell Physiol. 45, 831-844. Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H., and Chen, H.H. 2005. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46: 1125-1139. Tsai, W.C., Pan, Z.J., Hsiao, Y.Y., Jeng, M.F., Wu, T.F., Chen, W.H., and Chen, H.H. 2008. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol. 49: 814-824. Ülker, B., and Somssich, I.E. 2004. WRKY transcription factors: from DNA binding towards biological function. Curr. Opin. Plant Biol. 7: 491-498. Van Der Biezen, E.A., and Jones, J.D.G. 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23: 454-456. Van Loon, L.C., and Van Kammen, A. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. `Samsun' and `Samsun NN' : II. Changes in protein constitution after infection with Tobacco mosaic virus. Virology 40: 199-211. van Loon, L.C., Rep, M., and Pieterse, C.M.J. 2006. Significance of inducible defense-related proteins in infected plants. Ann. Rev. Phytopathol. 44, 135-162. Van Wees, S.C.M., Van der Ent, S., and Pieterse, C.M.J. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11: 443-448. Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., and Dong, X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17: 1784-1790. Whalen, M.C. 2005. Host defence in a developmental context. Mol. Plant Pathol. 6: 347-360. Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322: 681-692. Yalpani, N., Shulaev, V., and Raskin, I. 1993. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopathology 83: 702–708. Yanovsky, M.J., and Kay, S.A. 2002. Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308-312. Yu, H., Yang, S.H., and Goh, C.J. 2002. Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol. Biol. 49: 225-237. Zeevaart, J.A.D. 2008. Leaf-produced floral signals. Curr. Opin. Plant Biol. 11, 541-547. Zhang, S., and Klessig, D.F. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6: 520-527. Zhao, S., and Qi, X. 2008. Signaling in plant disease resistance and symbiosis. J. Integr. Plant Biol. 50: 799-807. Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20: 10-16. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23086 | - |
| dc.description.abstract | 一般植物在幼苗時期較易感病,隨著時間成長其抗病性也會增加,此稱為發育型抗性 (Developmental Resistance)。而植物在發育過程中,與發育相關之轉錄因子會調控基因的開啟以及關閉,目前已知花部發育主要受MADS-box family 轉錄因子調控。實驗室先前已建構東亞蘭嵌紋病毒 (Cymbidium mosaic virus, CymMV) virus-induced gene silencing (VIGS) 基因靜默載體能夠在蝴蝶蘭(Phalaenopsis amabilis)上進行功能性分析,並發現當花部器官之PeMADS6下降時會造成CymMV鞘蛋白 (coat protein, CP) 基因大量累積,因此推測PeMADS6可能參與抗病基因之調控。為研究此現象,先由蝴蝶蘭EST資料庫中尋找病程相關 (pathogenesis-related, PR) 基因作為分析抗病途徑之標記,並且瞭解PR基因是否受PeMADS6影響。在病毒感染的花部器官中PR1、PR10大量表現,然而在PeMADS6表現量降低時則無法偵測;PR7則是在病毒感染的葉部組織中能夠大量表現,但在花部器官中卻無法表現;PR16不論PeMADS6表現量是否下降,在病毒感染的情況可以在葉部組織以及花部組織中被偵測。發現PR1、PR7、PR10以及PR16會受PeMADS6影響,因此利用genome walking延伸這些PR基因之上游區域序列,目前已有PR1、PR10以及PR16的上游區域,藉由順向調控核酸序列分析,可在PR1和PR10上游區域中找出大量與抗病相關之核酸序列,並且發現在PR1上游區域中含有7個CArG核酸區域,此區域為MADS轉錄因子結合區域,但PR10上游區域則不含CArG核酸區域。因此進一步以DNA與PeMADS6蛋白質的結合,結果可知PeMADS6轉錄因子能夠直接與PR1上游區域結合,而無法與PR10之上游區域結合。本實驗初步瞭解花部發育之轉錄因子可能直接與間接調控抗病基因的表現。 | zh_TW |
| dc.description.abstract | Generally, plant is more susceptible during seedling stage and gradually become more resistance to pathogen infection. This type of resistance is named developmental resistance. Several transcription factors are reported to be involved in plant development. The most known transcription factors that involved in plant development belong to the MADS-box gene family. In our previous study, we knockdowned a Phalaenopsis orchid MADS-box gene, PeMADS6, in Phalaenopsis amabilis by Cymbidium mosaic virus- (CymMV) induced gene silencing vector for functional analysis. Accidentially, we found the accumulation of CymMV coat protein (CP) gene was greatly increased in PeMADS6 silenced floral organ. We speculated that PeMADS6 may involve in the Phalaenopsis orchid developmental resistance. To explore the possibility, we identified pathogen-related (PR) genes from orchid EST library, and analyzed the PR genes expression in response to PeMADS6 expression. We found that PR1 and PR10 can be induced by CymMV both in leaves and flowers; however, both PR1 and PR10 can not be induced in PeMADS6 silenced flowers. In addition, PR7 can be induced by CymMV in leaves but not flowers, and PR16 can be induced by CymMV both in leaves and flowers regardless the expression of PeMADS6. To further analyze if the PeMADS6 involved in the regulation of PR genes, we extended the upstream region of these PR genes by genome walking and analyzed the cis-acting elements in those regions. Notably, 7 CArG motifs were found in the upstream region of PR1 but not in PR10. Protein-DNA binding assay was conducted to assay wheather PeMADS6 can directly bind the upstream region of PR1. The results indicate that PeMADS6 can directly bind to upstream region of PR1 but not PR10, and suggeste that PeMADS6 may regulate PR1 in a directly mannor and PR10 in an indirectly mannor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:41:14Z (GMT). No. of bitstreams: 1 ntu-98-R96633007-1.pdf: 2332285 bytes, checksum: e10e6605461fbdd15e63a1aacd8d02c5 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract v 目錄 vii 表目錄 xii 圖目錄 xiii 附錄 xiv 第一章 前言 1 1.1 植物抗性 2 1.1.1 植物基本抗性 (Basal Resistance) 2 1.1.2 抗性基因調控型抗性 ( Resistance Gene-Mediated Resistance ) 3 1.1.3 系統性獲得抗性 (Systemic Acquired Resistance, SAR) 5 1.1.4 誘導性系統抗性 (Induced Systemic Resistance, ISR) 6 1.1.5 植物發育型抗性 (Developmental Defense) 8 1.1.6 病程相關蛋白 (Pathogenesis-Related Proteins) 8 1.2 花部器官發育 (Floral Organ Development) 9 1.2.1. 阿拉伯芥的開花機制 (Flowering Mechanism of Arabidopsis thaliana) 9 1.2.2. ABC開花模式中轉錄因子的功能 (Function of Transcription Factors in ABC Model) 10 1.3 蝴蝶蘭 (Phalaenopsis amabilis var. aphrodite) 之簡介 11 1.4 前人研究 12 第二章 材料與方法 14 2.1 植物材料以及生長環境 14 2.2 化學藥劑處理 14 2.3 EST 資料庫之功能分析 14 2.4 萃取植株RNA 15 2.5 植株基因體DNA萃取 15 2.6 染色體步移 (Genome Walking) 16 2.6.1 基因體DNA限制酶酵素酵解 (Digestion) 16 2.6.2 純化限制酶酵解的核酸 17 2.6.3 酵解後的基因體DNA與銜接子 (Adapter) 之接合反應 (Ligation) 17 2.6.4 築巢聚合酶鏈式反應 (nest Polymerase Chain Reaction) 18 2.6.5 瓊脂膠體核酸產物的回收 18 2.7 構築PeMADS6蛋白質表現載體 19 2.7.1 增幅PeMADS6片段 19 2.7.2 PeMADS6片段以及蛋白質表現載體pGEX-2T的酵解反應 19 2.7.3 pGEX-2T質體與PeMADS6片段之接合反應 20 2.7.4 轉型作用 (Transformation) 20 2.7.5 質體小量純化以及酵素酵解確認 21 2.7.6 質體大量純化以及定序 22 2.8 以大腸桿菌E. coli BL21 (DE3)表現蛋白質 22 2.8.1 誘導PeMADS6與GST融合之蛋白質小量表現 22 2.8.2 大量純化PeMADS6與GST融合蛋白質 24 2.8.3 蛋白質膠體電泳 24 2.8.4 蛋白質膠體染色 25 2.9 DNA親合性沉澱試驗 (DNA-Affinity Precipitation Assay, DAPA) 25 2.9.1 合成Biotin標定之DNA片段 25 2.9.2 PeMADS6與Biotin標定核酸之結合 26 2.9.3 線漬法 (Slot-Blot Assay) 27 2.9.4 核酸偵測 27 第三章 結果 29 3.1 EST資料庫序列的功能分析 29 3.2 PR基因之胺基酸序列比對 29 3.3 PR基因上游區域的延伸 30 3.4 PR基因啟動子序列分析 30 3.5 表現與純化PeMADS6-GST融合蛋白質 31 3.6 PeMADS6-GST融合蛋白質與PR1啟動子的結合試驗 31 3.7 PeMADS6-GST融合蛋白質與PR1啟動子的競爭性結合試驗 31 3.8 PeMADS6-GST融合蛋白質與PR10啟動子的競爭性結合試驗 32 第四章 討論 33 第五章 參考文獻 37 第六章 圖表集 50 第七章 附錄 106 表目錄 表一、蝴蝶蘭(Phalaenopsis amabilis) EST基因序列與Arabidopsis thaliana基因庫比對結果 50 表二、蝴蝶蘭EST中與抗性相關之基因 92 表三、論文中所用引子對之序列 93 圖目錄 圖 一、蝴蝶蘭EST序列之功能分群 95 圖 二、PR基因序列之排列比較 97 圖 三、PR1、PR7、PR10以及PR16基因之上游區域。 98 圖 四、PR基因上游區域順向調控區域(cis-acting elements)序列分析 100 圖 五、PeMADS6-GST融合蛋白質之純化 101 圖 六、PeMADS6-GST融合蛋白質與Biotin標定之PR1上游序列結合試驗。 103 圖 七、PR1以及PR10啟動子核酸片段競爭性結合試驗 105 附錄 圖表 1、pCymMV VIGS載體之基因結構 106 圖表 2、pGEX-2T蛋白質表現載體圖譜 107 圖表 3、PeMADS6-GST融合蛋白質量表現之時間點分析 108 圖表 4、在不同時間點之菌液以GST親合性結合珠子抓下PeMADS6- GST融合蛋白質的量之時間點分析。 109 圖表 5、分析其他物種的PR基因上游區域之CArG核酸區域 110 圖表 6、PR1上游區域之核酸調控區域 111 圖表 7、PR10上游區域之核酸調控區域 117 圖表 8、PR16上游區域之核酸調控區域 121 | |
| dc.language.iso | zh-TW | |
| dc.subject | DNA親和性蛋白質結合試驗 | zh_TW |
| dc.subject | 發育型抗性 | zh_TW |
| dc.subject | PeMADS6 | zh_TW |
| dc.subject | 病程相關基因 | zh_TW |
| dc.subject | 啟動子序列分析 | zh_TW |
| dc.subject | Developmental resistance | en |
| dc.subject | DAPA (DNA Affinty Protein Binding assay) | en |
| dc.subject | promoter analysis | en |
| dc.subject | Pathogenesis-Related (PR)gene | en |
| dc.subject | PeMADS6 | en |
| dc.title | 分析蝴蝶蘭PeMADS6轉錄因子參與病程相關基因表現之交互作用 | zh_TW |
| dc.title | Analysis of the Interaction between PeMADS6 Transcription Factor and Pathogenesis-Related Genes in Phalaenopsis Orchids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪挺軒(Ting-Hsuan Hung),吳俊達(Chun-Ta wu) | |
| dc.subject.keyword | 發育型抗性,PeMADS6,病程相關基因,啟動子序列分析,DNA親和性蛋白質結合試驗, | zh_TW |
| dc.subject.keyword | Developmental resistance,PeMADS6,Pathogenesis-Related (PR)gene,promoter analysis,DAPA (DNA Affinty Protein Binding assay), | en |
| dc.relation.page | 128 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
